182 research outputs found

    A Unified View of Large-scale Zero-sum Equilibrium Computation

    Full text link
    The task of computing approximate Nash equilibria in large zero-sum extensive-form games has received a tremendous amount of attention due mainly to the Annual Computer Poker Competition. Immediately after its inception, two competing and seemingly different approaches emerged---one an application of no-regret online learning, the other a sophisticated gradient method applied to a convex-concave saddle-point formulation. Since then, both approaches have grown in relative isolation with advancements on one side not effecting the other. In this paper, we rectify this by dissecting and, in a sense, unify the two views.Comment: AAAI Workshop on Computer Poker and Imperfect Informatio

    Proximal Gradient methods with Adaptive Subspace Sampling

    Get PDF
    Many applications in machine learning or signal processing involve nonsmooth optimization problems. This nonsmoothness brings a low-dimensional structure to the optimal solutions. In this paper, we propose a randomized proximal gradient method harnessing this underlying structure. We introduce two key components: i) a random subspace proximal gradient algorithm; ii) an identification-based sampling of the subspaces. Their interplay brings a significant performance improvement on typical learning problems in terms of dimensions explored

    Low-rank approximate inverse for preconditioning tensor-structured linear systems

    Full text link
    In this paper, we propose an algorithm for the construction of low-rank approximations of the inverse of an operator given in low-rank tensor format. The construction relies on an updated greedy algorithm for the minimization of a suitable distance to the inverse operator. It provides a sequence of approximations that are defined as the projections of the inverse operator in an increasing sequence of linear subspaces of operators. These subspaces are obtained by the tensorization of bases of operators that are constructed from successive rank-one corrections. In order to handle high-order tensors, approximate projections are computed in low-rank Hierarchical Tucker subsets of the successive subspaces of operators. Some desired properties such as symmetry or sparsity can be imposed on the approximate inverse operator during the correction step, where an optimal rank-one correction is searched as the tensor product of operators with the desired properties. Numerical examples illustrate the ability of this algorithm to provide efficient preconditioners for linear systems in tensor format that improve the convergence of iterative solvers and also the quality of the resulting low-rank approximations of the solution

    An Efficient Primal-Dual Prox Method for Non-Smooth Optimization

    Full text link
    We study the non-smooth optimization problems in machine learning, where both the loss function and the regularizer are non-smooth functions. Previous studies on efficient empirical loss minimization assume either a smooth loss function or a strongly convex regularizer, making them unsuitable for non-smooth optimization. We develop a simple yet efficient method for a family of non-smooth optimization problems where the dual form of the loss function is bilinear in primal and dual variables. We cast a non-smooth optimization problem into a minimax optimization problem, and develop a primal dual prox method that solves the minimax optimization problem at a rate of O(1/T)O(1/T) {assuming that the proximal step can be efficiently solved}, significantly faster than a standard subgradient descent method that has an O(1/T)O(1/\sqrt{T}) convergence rate. Our empirical study verifies the efficiency of the proposed method for various non-smooth optimization problems that arise ubiquitously in machine learning by comparing it to the state-of-the-art first order methods

    Highly-Smooth Zero-th Order Online Optimization Vianney Perchet

    Get PDF
    The minimization of convex functions which are only available through partial and noisy information is a key methodological problem in many disciplines. In this paper we consider convex optimization with noisy zero-th order information, that is noisy function evaluations at any desired point. We focus on problems with high degrees of smoothness, such as logistic regression. We show that as opposed to gradient-based algorithms, high-order smoothness may be used to improve estimation rates, with a precise dependence of our upper-bounds on the degree of smoothness. In particular, we show that for infinitely differentiable functions, we recover the same dependence on sample size as gradient-based algorithms, with an extra dimension-dependent factor. This is done for both convex and strongly-convex functions, with finite horizon and anytime algorithms. Finally, we also recover similar results in the online optimization setting.Comment: Conference on Learning Theory (COLT), Jun 2016, New York, United States. 201
    • …
    corecore