54 research outputs found

    Some recent advances in projection-type methods for variational inequalities

    Get PDF
    AbstractProjection-type methods are a class of simple methods for solving variational inequalities, especially for complementarity problems. In this paper we review and summarize recent developments in this class of methods, and focus mainly on some new trends in projection-type methods

    On alternating direction methods for monotropic semidefinite programming

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Numerical Methods for Mixed-Integer Optimal Control with Combinatorial Constraints

    Get PDF
    This thesis is concerned with numerical methods for Mixed-Integer Optimal Control Problems with Combinatorial Constraints. We establish an approximation theorem relating a Mixed-Integer Optimal Control Problem with Combinatorial Constraints to a continuous relaxed convexified Optimal Control Problems with Vanishing Constraints that provides the basis for numerical computations. We develop a a Vanishing- Constraint respecting rounding algorithm to exploit this correspondence computationally. Direct Discretization of the Optimal Control Problem with Vanishing Constraints yield a subclass of Mathematical Programs with Equilibrium Constraints. Mathematical Programs with Equilibrium Constraint constitute a class of challenging problems due to their inherent non-convexity and non-smoothness. We develop an active-set algorithm for Mathematical Programs with Equilibrium Constraints and prove global convergence to Bouligand stationary points of this algorithm under suitable technical conditions. For efficient computation of Newton-type steps of Optimal Control Problems, we establish the Generalized Lanczos Method for trust region problems in a Hilbert space context. To ensure real-time feasibility in Online Optimal Control Applications with tracking-type Lagrangian objective, we develop a Gauß-Newton preconditioner for the iterative solution method of the trust region problem. We implement the proposed methods and demonstrate their applicability and efficacy on several benchmark problems

    Complementarity and related problems

    Get PDF
    In this thesis, we present results related to complementarity problems. We study the linear complementarity problems on extended second order cones. We convert a linear complementarity problem on an extended second order cone into a mixed complementarity problem on the non-negative orthant. We present algorithms for this problem, and exemplify it by a numerical example. Following this result, we explore the stochastic version of this linear complementarity problem. Finally, we apply complementarity problems on extended second order cones in a portfolio optimisation problem. In this application, we exploit our theoretical results to find an analytical solution to a new portfolio optimisation model. We also study the spherical quasi-convexity of quadratic functions on spherically self-dual convex sets. We start this study by exploring the characterisations and conditions for the spherical positive orthant. We present several conditions characterising the spherical quasi-convexity of quadratic functions. Then we generalise the conditions to the spherical quasi-convexity on spherically self-dual convex sets. In particular, we highlight the case of spherical second order cones

    Structured Low Rank Matrix Optimization Problems: A Penalty Approach

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore