4,695 research outputs found

    Convergence of type-symmetric and cut-balanced consensus seeking systems (extended version)

    Get PDF
    We consider continuous-time consensus seeking systems whose time-dependent interactions are cut-balanced, in the following sense: if a group of agents influences the remaining ones, the former group is also influenced by the remaining ones by at least a proportional amount. Models involving symmetric interconnections and models in which a weighted average of the agent values is conserved are special cases. We prove that such systems always converge. We give a sufficient condition on the evolving interaction topology for the limit values of two agents to be the same. Conversely, we show that if our condition is not satisfied, then these limits are generically different. These results allow treating systems where the agent interactions are a priori unknown, e.g., random or determined endogenously by the agent values. We also derive corresponding results for discrete-time systems.Comment: update of the file following publication of journal version, including a minor correction in the proof of theorem 1(b). 12 pages, 12 tex files, no figur

    Differential Inequalities in Multi-Agent Coordination and Opinion Dynamics Modeling

    Get PDF
    Distributed algorithms of multi-agent coordination have attracted substantial attention from the research community; the simplest and most thoroughly studied of them are consensus protocols in the form of differential or difference equations over general time-varying weighted graphs. These graphs are usually characterized algebraically by their associated Laplacian matrices. Network algorithms with similar algebraic graph theoretic structures, called being of Laplacian-type in this paper, also arise in other related multi-agent control problems, such as aggregation and containment control, target surrounding, distributed optimization and modeling of opinion evolution in social groups. In spite of their similarities, each of such algorithms has often been studied using separate mathematical techniques. In this paper, a novel approach is offered, allowing a unified and elegant way to examine many Laplacian-type algorithms for multi-agent coordination. This approach is based on the analysis of some differential or difference inequalities that have to be satisfied by the some "outputs" of the agents (e.g. the distances to the desired set in aggregation problems). Although such inequalities may have many unbounded solutions, under natural graphic connectivity conditions all their bounded solutions converge (and even reach consensus), entailing the convergence of the corresponding distributed algorithms. In the theory of differential equations the absence of bounded non-convergent solutions is referred to as the equation's dichotomy. In this paper, we establish the dichotomy criteria of Laplacian-type differential and difference inequalities and show that these criteria enable one to extend a number of recent results, concerned with Laplacian-type algorithms for multi-agent coordination and modeling opinion formation in social groups.Comment: accepted to Automatic

    Continuous-time consensus under persistent connectivity and slow divergence of reciprocal interaction weights

    Full text link
    In this paper, we present new results on consensus for continuous-time multi- agent systems. We introduce the assumptions of persistent connectivity of the interaction graph and of slow divergence of reciprocal interaction weights. Persistent connectivity can be considered as the counterpart of the notion of ultimate connectivity used in discrete- time consensus protocols. Slow divergence of reciprocal interaction weights generalizes the assumption of cut-balanced interactions. We show that under these two assumptions, the continuous-time consensus protocol succeeds: the states of all the agents converge asymptotically to a common value. Moreover, our proof allows us to give an estimate of the rate of convergence towards the consensus. We also provide two examples that make us think that both of our assumptions are tight

    Opinion Dynamics in Social Networks with Hostile Camps: Consensus vs. Polarization

    Get PDF
    Most of the distributed protocols for multi-agent consensus assume that the agents are mutually cooperative and "trustful," and so the couplings among the agents bring the values of their states closer. Opinion dynamics in social groups, however, require beyond these conventional models due to ubiquitous competition and distrust between some pairs of agents, which are usually characterized by repulsive couplings and may lead to clustering of the opinions. A simple yet insightful model of opinion dynamics with both attractive and repulsive couplings was proposed recently by C. Altafini, who examined first-order consensus algorithms over static signed graphs. This protocol establishes modulus consensus, where the opinions become the same in modulus but may differ in signs. In this paper, we extend the modulus consensus model to the case where the network topology is an arbitrary time-varying signed graph and prove reaching modulus consensus under mild sufficient conditions of uniform connectivity of the graph. For cut-balanced graphs, not only sufficient, but also necessary conditions for modulus consensus are given.Comment: scheduled for publication in IEEE Transactions on Automatic Control, 2016, vol. 61, no. 7 (accepted in August 2015

    Continuous-Time Consensus under Non-Instantaneous Reciprocity

    Full text link
    We consider continuous-time consensus systems whose interactions satisfy a form or reciprocity that is not instantaneous, but happens over time. We show that these systems have certain desirable properties: They always converge independently of the specific interactions taking place and there exist simple conditions on the interactions for two agents to converge to the same value. This was until now only known for systems with instantaneous reciprocity. These result are of particular relevance when analyzing systems where interactions are a priori unknown, being for example endogenously determined or random. We apply our results to an instance of such systems.Comment: 12 pages, 4 figure

    On Endogenous Random Consensus and Averaging Dynamics

    Full text link
    Motivated by various random variations of Hegselmann-Krause model for opinion dynamics and gossip algorithm in an endogenously changing environment, we propose a general framework for the study of endogenously varying random averaging dynamics, i.e.\ an averaging dynamics whose evolution suffers from history dependent sources of randomness. We show that under general assumptions on the averaging dynamics, such dynamics is convergent almost surely. We also determine the limiting behavior of such dynamics and show such dynamics admit infinitely many time-varying Lyapunov functions
    • …
    corecore