482 research outputs found

    Convergence of the uniaxial PML method for time-domain electromagnetic scattering problems

    Full text link
    In this paper, we propose and study the uniaxial perfectly matched layer (PML) method for three-dimensional time-domain electromagnetic scattering problems, which has a great advantage over the spherical one in dealing with problems involving anisotropic scatterers. The truncated uniaxial PML problem is proved to be well-posed and stable, based on the Laplace transform technique and the energy method. Moreover, the L2L^2-norm and L∞L^{\infty}-norm error estimates in time are given between the solutions of the original scattering problem and the truncated PML problem, leading to the exponential convergence of the time-domain uniaxial PML method in terms of the thickness and absorbing parameters of the PML layer. The proof depends on the error analysis between the EtM operators for the original scattering problem and the truncated PML problem, which is different from our previous work (SIAM J. Numer. Anal. 58(3) (2020), 1918-1940).Comment: 23 pages, 1 figure. arXiv admin note: text overlap with arXiv:1907.0890

    Spectral-Domain Computation of Fields Radiated by Sources in Non-Birefringent Anisotropic Media

    Full text link
    We derive the key expressions to robustly address the eigenfunction expansion-based analysis of electromagnetic (EM) fields produced by current sources within planar non-birefringent anisotropic medium (NBAM) layers. In NBAM, the highly symmetric permeability and permittivity tensors can induce directionally-dependent, but polarization independent, propagation properties supporting "degenerate" characteristic polarizations, i.e. four linearly-independent eigenvectors associated with only two (rather than four) unique, non-defective eigenvalues. We first explain problems that can arise when the source(s) specifically reside within NBAM planar layers when using canonical field expressions. To remedy these problems, we exhibit alternative spectral-domain field expressions, immune to such problems, that form the foundation for a robust eigenfunction expansion-based analysis of time-harmonic EM radiation and scattering within such type of planar-layered media. Numerical results demonstrate the high accuracy and stability achievable using this algorithm.Comment: The official (preliminary) published version of this manuscript, along with copyright information, can be found using the provided DOI. IEEE Antennas Wireless Propag. Lett., 201

    Modeling seismic wave propagation and amplification in 1D/2D/3D linear and nonlinear unbounded media

    Full text link
    To analyze seismic wave propagation in geological structures, it is possible to consider various numerical approaches: the finite difference method, the spectral element method, the boundary element method, the finite element method, the finite volume method, etc. All these methods have various advantages and drawbacks. The amplification of seismic waves in surface soil layers is mainly due to the velocity contrast between these layers and, possibly, to topographic effects around crests and hills. The influence of the geometry of alluvial basins on the amplification process is also know to be large. Nevertheless, strong heterogeneities and complex geometries are not easy to take into account with all numerical methods. 2D/3D models are needed in many situations and the efficiency/accuracy of the numerical methods in such cases is in question. Furthermore, the radiation conditions at infinity are not easy to handle with finite differences or finite/spectral elements whereas it is explicitely accounted in the Boundary Element Method. Various absorbing layer methods (e.g. F-PML, M-PML) were recently proposed to attenuate the spurious wave reflections especially in some difficult cases such as shallow numerical models or grazing incidences. Finally, strong earthquakes involve nonlinear effects in surficial soil layers. To model strong ground motion, it is thus necessary to consider the nonlinear dynamic behaviour of soils and simultaneously investigate seismic wave propagation in complex 2D/3D geological structures! Recent advances in numerical formulations and constitutive models in such complex situations are presented and discussed in this paper. A crucial issue is the availability of the field/laboratory data to feed and validate such models.Comment: of International Journal Geomechanics (2010) 1-1
    • …
    corecore