2,314 research outputs found

    Convergence of the stochastic Euler scheme for locally Lipschitz coefficients

    Full text link
    Stochastic differential equations are often simulated with the Monte Carlo Euler method. Convergence of this method is well understood in the case of globally Lipschitz continuous coefficients of the stochastic differential equation. The important case of superlinearly growing coefficients, however, has remained an open question. The main difficulty is that numerically weak convergence fails to hold in many cases of superlinearly growing coefficients. In this paper we overcome this difficulty and establish convergence of the Monte Carlo Euler method for a large class of one-dimensional stochastic differential equations whose drift functions have at most polynomial growth.Comment: Published at http://www.springerlink.com/content/g076w80730811vv3 in the Foundations of Computational Mathematics 201

    An explicit Euler scheme with strong rate of convergence for financial SDEs with non-Lipschitz coefficients

    Full text link
    We consider the approximation of stochastic differential equations (SDEs) with non-Lipschitz drift or diffusion coefficients. We present a modified explicit Euler-Maruyama discretisation scheme that allows us to prove strong convergence, with a rate. Under some regularity and integrability conditions, we obtain the optimal strong error rate. We apply this scheme to SDEs widely used in the mathematical finance literature, including the Cox-Ingersoll-Ross~(CIR), the 3/2 and the Ait-Sahalia models, as well as a family of mean-reverting processes with locally smooth coefficients. We numerically illustrate the strong convergence of the scheme and demonstrate its efficiency in a multilevel Monte Carlo setting.Comment: 36 pages, 17 figures, 2 table

    Convergence of numerical methods for stochastic differential equations in mathematical finance

    Full text link
    Many stochastic differential equations that occur in financial modelling do not satisfy the standard assumptions made in convergence proofs of numerical schemes that are given in textbooks, i.e., their coefficients and the corresponding derivatives appearing in the proofs are not uniformly bounded and hence, in particular, not globally Lipschitz. Specific examples are the Heston and Cox-Ingersoll-Ross models with square root coefficients and the Ait-Sahalia model with rational coefficient functions. Simple examples show that, for example, the Euler-Maruyama scheme may not converge either in the strong or weak sense when the standard assumptions do not hold. Nevertheless, new convergence results have been obtained recently for many such models in financial mathematics. These are reviewed here. Although weak convergence is of traditional importance in financial mathematics with its emphasis on expectations of functionals of the solutions, strong convergence plays a crucial role in Multi Level Monte Carlo methods, so it and also pathwise convergence will be considered along with methods which preserve the positivity of the solutions.Comment: Review Pape

    Convergence of the Euler-Maruyama method for multidimensional SDEs with discontinuous drift and degenerate diffusion coefficient

    Get PDF
    We prove strong convergence of order 1/4ϵ1/4-\epsilon for arbitrarily small ϵ>0\epsilon>0 of the Euler-Maruyama method for multidimensional stochastic differential equations (SDEs) with discontinuous drift and degenerate diffusion coefficient. The proof is based on estimating the difference between the Euler-Maruyama scheme and another numerical method, which is constructed by applying the Euler-Maruyama scheme to a transformation of the SDE we aim to solve
    corecore