206 research outputs found

    A PDE approach to centroidal tessellations of domains

    Full text link
    We introduce a class of systems of Hamilton-Jacobi equations that characterize critical points of functionals associated to centroidal tessellations of domains, i.e. tessellations where generators and centroids coincide, such as centroidal Voronoi tessellations and centroidal power diagrams. An appropriate version of the Lloyd algorithm, combined with a Fast Marching method on unstructured grids for the Hamilton-Jacobi equation, allows computing the solution of the system. We propose various numerical examples to illustrate the features of the technique

    Probabilistic and parallel algorithms for centroidal Voronoi tessellations with application to meshless computing and numerical analysis on surfaces

    Get PDF
    Centroidal Voronoi tessellations (CVT) are Voronoi tessellations of a region such that the generating points of the tessellations are also the centroids of the corresponding Voronoi regions. Such tessellations are of use in very diverse applications, including data compression, clustering analysis, cell biology, territorial behavior of animals, optimal allocation of resources, and grid generation. A detailed review is given in chapter 1. In chapter 2, some probabilistic methods for determining centroidal Voronoi tessellations and their parallel implementation on distributed memory systems are presented. The results of computational experiments performed on a CRAY T3E-600 system are given for each algorithm. These demonstrate the superior sequential and parallel performance of a new algorithm we introduce. Then, new algorithms are presented in chapter 3 for the determination of point sets and associated support regions that can then be used in meshless computing methods. The algorithms are probabilistic in nature so that they are totally meshfree, i.e., they do not require, at any stage, the use of any coarse or fine boundary conforming or superimposed meshes. Computational examples are provided that show, for both uniform and non-uniform point distributions that the algorithms result in high-quality point sets and high-quality support regions. The extensions of centroidal Voronoi tessellations to general spaces and sets are also available. For example, tessellations of surfaces in a Euclidean space may be considered. In chapter 4, a precise definition of such constrained centroidal Voronoi tessellations (CCVT\u27s) is given and a number of their properties are derived, including their characterization as minimizers of a kind of energy. Deterministic and probabilistic algorithms for the construction of CCVT\u27s are presented and some analytical results for one of the algorithms are given. Some computational examples are provided which serve to illustrate the high quality of CCVT point sets. CCVT point sets are also applied to polynomial interpolation and numerical integration on the sphere. Finally, some conclusions are given in chapter 5

    Centroidal power diagrams, Lloyd's algorithm and applications to optimal location problems

    Get PDF
    In this paper we develop a numerical method for solving a class of optimization problems known as optimal location or quantization problems. The target energy can be written either in terms of atomic measures and the Wasserstein distance or in terms of weighted points and power diagrams (generalized Voronoi diagrams). The latter formulation is more suitable for computation. We show that critical points of the energy are centroidal power diagrams, which are generalizations of centroidal Voronoi tessellations, and that they can be approximated by a generalization of Lloyd's algorithm (Lloyd's algorithm is a common method for finding centroidal Voronoi tessellations). We prove that the algorithm is energy decreasing and prove a convergence theorem. Numerical experiments suggest that the algorithm converges linearly. We illustrate the algorithm in two and three dimensions using simple models of optimal location and crystallization (see online supplementary material)
    • …
    corecore