4,778 research outputs found

    The least squares method for option pricing revisited

    Full text link
    It is shown that the the popular least squares method of option pricing converges even under very general assumptions. This substantially increases the freedom of creating different implementations of the method, with varying levels of computational complexity and flexible approach to regression. It is also argued that in many practical applications even modest non-linear extensions of standard regression may produce satisfactory results. This claim is illustrated with examples

    Essays on Computational Problems in Insurance

    Get PDF
    This dissertation consists of two chapters. The first chapter establishes an algorithm for calculating capital requirements. The calculation of capital requirements for financial institutions usually entails a reevaluation of the company\u27s assets and liabilities at some future point in time for a (large) number of stochastic forecasts of economic and firm-specific variables. The complexity of this nested valuation problem leads many companies to struggle with the implementation. The current chapter proposes and analyzes a novel approach to this computational problem based on least-squares regression and Monte Carlo simulations. Our approach is motivated by a well-known method for pricing non-European derivatives. We study convergence of the algorithm and analyze the resulting estimate for practically important risk measures. Moreover, we address the problem of how to choose the regressors, and show that an optimal choice is given by the left singular functions of the corresponding valuation operator. Our numerical examples demonstrate that the algorithm can produce accurate results at relatively low computational costs, particularly when relying on the optimal basis functions. The second chapter discusses another application of regression-based methods, in the context of pricing variable annuities. Advanced life insurance products with exercise-dependent financial guarantees present challenging problems in view of pricing and risk management. In particular, due to the complexity of the guarantees and since practical valuation frameworks include a variety of stochastic risk factors, conventional methods that are based on the discretization of the underlying (Markov) state space may not be feasible. As a practical alternative, this chapter explores the applicability of Least-Squares Monte Carlo (LSM) methods familiar from American option pricing in this context. Unlike previous literature we consider optionality beyond surrendering the contract, where we focus on popular withdrawal benefits - so-called GMWBs - within Variable Annuities. We introduce different LSM variants, particularly the regression-now and regression-later approaches, and explore their viability and potential pitfalls. We commence our numerical analysis in a basic Black-Scholes framework, where we compare the LSM results to those from a discretization approach. We then extend the model to include various relevant risk factors and compare the results to those from the basic framework

    On the robustness of least-squares Monte Carlo (LSM) for pricing American derivatives

    Get PDF
    This paper analyses the robustness of Least-Squares Monte Carlo, a technique recently proposed by Longstaff and Schwartz (2001) for pricing American options. This method is based on least-squares regressions in which the explanatory variables are certain polynomial functions. We analyze the impact of different basis functions on option prices. Numerical results for American put options provide evidence that a) this approach is very robust to the choice of different alternative polynomials and b) few basis functions are required. However, these conclusions are not reached when analyzing more complex derivatives.Least-Squares Monte Carlo, option pricing, American options

    Valuing American Put Options Using Chebyshev Polynomial Approximation

    Get PDF
    This paper suggests a simple valuation method based on Chebyshev approximation at Chebyshev nodes to value American put options. It is similar to the approach taken in Sullivan (2000), where the option`s continuation region function is estimated by using a Chebyshev polynomial. However, in contrast to Sullivan (2000), the functional is fitted by using Chebyshev nodes. The suggested method is flexible, easy to program and efficient, and can be extended to price other types of derivative instruments. It is also applicable in other fields, providing efficient solutions to complex systems of partial differential equations. The paper also describes an alternative method based on dynamic programming and backward induction to approximate the option value in each time period

    An Irregular Grid Approach for Pricing High-Dimensional American Options

    Get PDF
    We propose and test a new method for pricing American options in a high-dimensional setting.The method is centred around the approximation of the associated complementarity problem on an irregular grid.We approximate the partial differential operator on this grid by appealing to the SDE representation of the underlying process and computing the root of the transition probability matrix of an approximating Markov chain.Experimental results in five dimensions are presented for four different payoff functions.option pricing;inequality;markov chains

    Valuing American Derivatives by Least Squares Methods

    Get PDF
    Least Squares estimators are notoriously known to generate sub-optimal exercise decisions when determining the optimal stopping time. The consequence is that the price of the option will be underestimated. We show how to use variance reduction techniques to extend some recent Monte Carlo estimators for option pricing and assess their performance in finite samples. Finally, we extend the Longstaff and Schwartz (2001) method to price American options under stochastic volatility. This is the first study to implement and apply the Glasserman and Yu (2004b) methodology to price Asian options and basket options.American options, Monte Carlo method

    Valuing American Style Options by Least Squares Methods

    Get PDF
    We investigate the finite sample performance of some recent Monte Carlo estimators under different market scenarios. We find that the accuracy and efficiency of these estimators are remarkable, even when more exotic financial instruments are considered. Finally, we extend the Glasserman and Yu (2004b) methodology to price Asian Bermudan options and basket options
    • …
    corecore