22,754 research outputs found

    Iterative Soft Input Soft Output Decoding of Reed-Solomon Codes by Adapting the Parity Check Matrix

    Full text link
    An iterative algorithm is presented for soft-input-soft-output (SISO) decoding of Reed-Solomon (RS) codes. The proposed iterative algorithm uses the sum product algorithm (SPA) in conjunction with a binary parity check matrix of the RS code. The novelty is in reducing a submatrix of the binary parity check matrix that corresponds to less reliable bits to a sparse nature before the SPA is applied at each iteration. The proposed algorithm can be geometrically interpreted as a two-stage gradient descent with an adaptive potential function. This adaptive procedure is crucial to the convergence behavior of the gradient descent algorithm and, therefore, significantly improves the performance. Simulation results show that the proposed decoding algorithm and its variations provide significant gain over hard decision decoding (HDD) and compare favorably with other popular soft decision decoding methods.Comment: 10 pages, 10 figures, final version accepted by IEEE Trans. on Information Theor

    Adaptive control in rollforward recovery for extreme scale multigrid

    Full text link
    With the increasing number of compute components, failures in future exa-scale computer systems are expected to become more frequent. This motivates the study of novel resilience techniques. Here, we extend a recently proposed algorithm-based recovery method for multigrid iterations by introducing an adaptive control. After a fault, the healthy part of the system continues the iterative solution process, while the solution in the faulty domain is re-constructed by an asynchronous on-line recovery. The computations in both the faulty and healthy subdomains must be coordinated in a sensitive way, in particular, both under and over-solving must be avoided. Both of these waste computational resources and will therefore increase the overall time-to-solution. To control the local recovery and guarantee an optimal re-coupling, we introduce a stopping criterion based on a mathematical error estimator. It involves hierarchical weighted sums of residuals within the context of uniformly refined meshes and is well-suited in the context of parallel high-performance computing. The re-coupling process is steered by local contributions of the error estimator. We propose and compare two criteria which differ in their weights. Failure scenarios when solving up to 6.9â‹…10116.9\cdot10^{11} unknowns on more than 245\,766 parallel processes will be reported on a state-of-the-art peta-scale supercomputer demonstrating the robustness of the method

    Economic MPC with periodic terminal constraints of nonlinear differential-algebraic-equation systems: Application to drinking water networks

    Get PDF
    © 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other worksIn this paper, an Economic Model Predictive Control (EMPC) strategy with periodic terminal constraints is addressed for nonlinear differential-algebraic-equation systems with an application to Drinking Water Networks (DWNs). DWNs have some periodic behaviours because of the daily seasonality of water demands and electrical energy price. The periodic terminal constraint and economic terminal cost are implemented in the EMPC controller design for the purpose of achieving convergence. The feasibility of the proposed EMPC strategy when disturbances are considered is guaranteed by means of soft constraints implemented by using slack variables. Finally, the comparison results in a case study of the D-Town water network is provided by applying the EMPC strategy with or without periodic terminal constraints.Accepted versio
    • …
    corecore