1,280 research outputs found

    Partitioning networks into cliques: a randomized heuristic approach

    Get PDF
    In the context of community detection in social networks, the term community can be grounded in the strict way that simply everybody should know each other within the community. We consider the corresponding community detection problem. We search for a partitioning of a network into the minimum number of non-overlapping cliques, such that the cliques cover all vertices. This problem is called the clique covering problem (CCP) and is one of the classical NP-hard problems. For CCP, we propose a randomized heuristic approach. To construct a high quality solution to CCP, we present an iterated greedy (IG) algorithm. IG can also be combined with a heuristic used to determine how far the algorithm is from the optimum in the worst case. Randomized local search (RLS) for maximum independent set was proposed to find such a bound. The experimental results of IG and the bounds obtained by RLS indicate that IG is a very suitable technique for solving CCP in real-world graphs. In addition, we summarize our basic rigorous results, which were developed for analysis of IG and understanding of its behavior on several relevant graph classes

    Analysis of an iterated greedy heuristic for vertex clique covering

    Get PDF
    The aim of the vertex clique covering problem (CCP) is to cover the vertices of a graph with as few cliques as possible. We analyse the iterated greedy (IG) algorithm for CCP, which was previously shown to provide strong empirical results for real-world networks. It is demonstrated how the techniques of analysis for randomised search heuristics can be applied to IG, and several practically relevant results are obtained. We show that for triangle-free graphs, IG solves CCP optimally in expected polynomial time. Secondly, we show that IG finds the optimum for CCP in a specific case of sparse random graphs in expected polynomial time with high probability. For Baraba´si-Albert model of scale-free networks, which is a canonical model explaining the growth of social, biological or computer networks, we obtain that IG obtains an asymptotically optimal approximation in polynomial time in expectation. Last but not least, we propose a slightly modified variant of IG, which guarantees expected polynomial-time convergence to the optimum for graphs with non-overlapping triangles

    Analysis of Iterated Greedy Heuristic for Vertex Clique Covering

    Get PDF
    The aim of the vertex clique covering problem (CCP) is to cover the vertices of a graph with as few cliques as possible. We analyse the iterated greedy (IG) algorithm for CCP, which was previously shown to provide strong empirical results for real-world networks. It is demonstrated how the techniques of analysis for randomised search heuristics can be applied to IG, and several practically relevant results are obtained. We show that for triangle-free graphs, IG solves CCP optimally in expected polynomial time. Secondly, we show that IG finds the optimum for CCP in a specific case of sparse random graphs in expected polynomial time with high probability. For Barabási-Albert model of scale-free networks, which is a canonical model explaining the growth of social, biological or computer networks, we obtain that IG obtains an asymptotically optimal approximation in polynomial time in expectation. Last but not least, we propose a slightly modified variant of IG, which guarantees expected polynomial-time convergence to the optimum for graphs with non-overlapping triangles
    corecore