695 research outputs found

    Approximation of Fractional Harmonic Maps

    Get PDF
    The article of record as published may be located at https://doi.org/10.48550/arXiv.2104.10049Funded by Naval Postgraduate SchoolThis paper addresses the approximation of fractional harmonic maps. Besides a unit-length constraint, one has to tackle the difficulty of nonlocality. We establish weak compactness results for critical points of the fractional Dirichlet energy on unit-length vector fields. We devise and analyze numerical methods for the approximation of various partial differential equations related to fractional harmonic maps. The compactness results imply the convergence of numerical approximations. Numerical examples on spin chain dynamics and point defects are presented to demonstrate the effectiveness of the proposed methods.HA is partially supported by NSF grants DMS-1818772 and DMS-1913004, the Air Force Office of Scientific Research under Award NO: FA9550-19-1-0036, and the Department of the Navy, Naval Postgraduate School under Award NO: N00244-20-1-0005. SB acknowledges support by the DFG via the Research Unit FOR 3013 Vector- and tensor-valued surface PDEs. AS is supported by NSF Career DMS-2044898 and Simons foundation grant no 579261.HA is partially supported by NSF grants DMS-1818772 and DMS-1913004, the Air Force Office of Scientific Research under Award NO: FA9550-19-1-0036, and the Department of the Navy, Naval Postgraduate School under Award NO: N00244-20-1-0005. SB acknowledges support by the DFG via the Research Unit FOR 3013 Vector- and tensor-valued surface PDEs. AS is supported by NSF Career DMS-2044898 and Simons foundation grant no 579261

    Inf-Sup Stable Finite Element Methods for the Landau--Lifshitz--Gilbert and Harmonic Map Heat Flow Equations

    Get PDF
    In this paper we propose and analyze a finite element method for both the harmonic map heat and Landau–Lifshitz–Gilbert equation, the time variable remaining continuous. Our starting point is to set out a unified saddle point approach for both problems in order to impose the unit sphere constraint at the nodes since the only polynomial function satisfying the unit sphere constraint everywhere are constants. A proper inf-sup condition is proved for the Lagrange multiplier leading to the well-posedness of the unified formulation. A priori energy estimates are shown for the proposed method. When time integrations are combined with the saddle point finite element approximation some extra elaborations are required in order to ensure both a priori energy estimates for the director or magnetization vector depending on the model and an inf-sup condition for the Lagrange multiplier. This is due to the fact that the unit length at the nodes is not satisfied in general when a time integration is performed. We will carry out a linear Euler time-stepping method and a non-linear Crank–Nicolson method. The latter is solved by using the former as a non-linear solver.Ministerio de Economía y Competitividad MTM2015-69875-

    HDGlab: An Open-Source Implementation of the Hybridisable Discontinuous Galerkin Method in MATLAB

    Get PDF
    This paper presents HDGlab, an open source MATLAB implementation of the hybridisable discontinuous Galerkin (HDG) method. The main goal is to provide a detailed description of both the HDG method for elliptic problems and its implementation available in HDGlab. Ultimately, this is expected to make this relatively new advanced discretisation method more accessible to the computational engineering community. HDGlab presents some features not available in other implementations of the HDG method that can be found in the free domain. First, it implements high-order polynomial shape functions up to degree nine, with both equally-spaced and Fekete nodal distributions. Second, it supports curved isoparametric simplicial elements in two and three dimensions. Third, it supports non-uniform degree polynomial approximations and it provides a flexible structure to devise degree adaptivity strategies. Finally, an interface with the open-source high-order mesh generator Gmsh is provided to facilitate its application to practical engineering problems

    Spectral Methods for Numerical Relativity

    Get PDF
    Version published online by Living Reviews in Relativity.International audienceEquations arising in General Relativity are usually too complicated to be solved analytically and one has to rely on numerical methods to solve sets of coupled partial differential equations. Among the possible choices, this paper focuses on a class called spectral methods where, typically, the various functions are expanded onto sets of orthogonal polynomials or functions. A theoretical introduction on spectral expansion is first given and a particular emphasis is put on the fast convergence of the spectral approximation. We present then different approaches to solve partial differential equations, first limiting ourselves to the one-dimensional case, with one or several domains. Generalization to more dimensions is then discussed. In particular, the case of time evolutions is carefully studied and the stability of such evolutions investigated. One then turns to results obtained by various groups in the field of General Relativity by means of spectral methods. First, works which do not involve explicit time-evolutions are discussed, going from rapidly rotating strange stars to the computation of binary black holes initial data. Finally, the evolutions of various systems of astrophysical interest are presented, from supernovae core collapse to binary black hole mergers

    Inertial Coupling Method for particles in an incompressible fluctuating fluid

    Full text link
    We develop an inertial coupling method for modeling the dynamics of point-like 'blob' particles immersed in an incompressible fluid, generalizing previous work for compressible fluids. The coupling consistently includes excess (positive or negative) inertia of the particles relative to the displaced fluid, and accounts for thermal fluctuations in the fluid momentum equation. The coupling between the fluid and the blob is based on a no-slip constraint equating the particle velocity with the local average of the fluid velocity, and conserves momentum and energy. We demonstrate that the formulation obeys a fluctuation-dissipation balance, owing to the non-dissipative nature of the no-slip coupling. We develop a spatio-temporal discretization that preserves, as best as possible, these properties of the continuum formulation. In the spatial discretization, the local averaging and spreading operations are accomplished using compact kernels commonly used in immersed boundary methods. We find that the special properties of these kernels make the discrete blob a particle with surprisingly physically-consistent volume, mass, and hydrodynamic properties. We develop a second-order semi-implicit temporal integrator that maintains discrete fluctuation-dissipation balance, and is not limited in stability by viscosity. Furthermore, the temporal scheme requires only constant-coefficient Poisson and Helmholtz linear solvers, enabling a very efficient and simple FFT-based implementation on GPUs. We numerically investigate the performance of the method on several standard test problems...Comment: Contains a number of corrections and an additional Figure 7 (and associated discussion) relative to published versio

    Multi-symplectic discretisation of wave map equations

    Full text link
    We present a new multi-symplectic formulation of constrained Hamiltonian partial differential equations, and we study the associated local conservation laws. A multi-symplectic discretisation based on this new formulation is exemplified by means of the Euler box scheme. When applied to the wave map equation, this numerical scheme is explicit, preserves the constraint and can be seen as a generalisation of the Shake algorithm for constrained mechanical systems. Furthermore, numerical experiments show excellent conservation properties of the numerical solutions
    corecore