4,591 research outputs found

    Convergence of a Second Order Markov Chain

    Full text link
    In this paper, we consider convergence properties of a second order Markov chain. Similar to a column stochastic matrix is associated to a Markov chain, a so called {\em transition probability tensor} PP of order 3 and dimension nn is associated to a second order Markov chain with nn states. For this PP, define FPF_P as FP(x):=Px2F_P(x):=Px^{2} on the n1n-1 dimensional standard simplex Δn\Delta_n. If 1 is not an eigenvalue of FP\nabla F_P on Δn\Delta_n and PP is irreducible, then there exists a unique fixed point of FPF_P on Δn\Delta_n. In particular, if every entry of PP is greater than 12n\frac{1}{2n}, then 1 is not an eigenvalue of FP\nabla F_P on Δn\Delta_n. Under the latter condition, we further show that the second order power method for finding the unique fixed point of FPF_P on Δn\Delta_n is globally linearly convergent and the corresponding second order Markov process is globally RR-linearly convergent.Comment: 16 pages, 3 figure

    Tensor Spectral Clustering for Partitioning Higher-order Network Structures

    Full text link
    Spectral graph theory-based methods represent an important class of tools for studying the structure of networks. Spectral methods are based on a first-order Markov chain derived from a random walk on the graph and thus they cannot take advantage of important higher-order network substructures such as triangles, cycles, and feed-forward loops. Here we propose a Tensor Spectral Clustering (TSC) algorithm that allows for modeling higher-order network structures in a graph partitioning framework. Our TSC algorithm allows the user to specify which higher-order network structures (cycles, feed-forward loops, etc.) should be preserved by the network clustering. Higher-order network structures of interest are represented using a tensor, which we then partition by developing a multilinear spectral method. Our framework can be applied to discovering layered flows in networks as well as graph anomaly detection, which we illustrate on synthetic networks. In directed networks, a higher-order structure of particular interest is the directed 3-cycle, which captures feedback loops in networks. We demonstrate that our TSC algorithm produces large partitions that cut fewer directed 3-cycles than standard spectral clustering algorithms.Comment: SDM 201

    A finite state projection algorithm for the stationary solution of the chemical master equation

    Full text link
    The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash (Jour. Chem. Phys. 2006), to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantised tensor train (QTT) implementation of our sFSP method, problems admitting more than 100 million states can be efficiently solved.Comment: 8 figure

    A finite state projection algorithm for the stationary solution of the chemical master equation

    Full text link
    The chemical master equation (CME) is frequently used in systems biology to quantify the effects of stochastic fluctuations that arise due to biomolecular species with low copy numbers. The CME is a system of ordinary differential equations that describes the evolution of probability density for each population vector in the state-space of the stochastic reaction dynamics. For many examples of interest, this state-space is infinite, making it difficult to obtain exact solutions of the CME. To deal with this problem, the Finite State Projection (FSP) algorithm was developed by Munsky and Khammash (Jour. Chem. Phys. 2006), to provide approximate solutions to the CME by truncating the state-space. The FSP works well for finite time-periods but it cannot be used for estimating the stationary solutions of CMEs, which are often of interest in systems biology. The aim of this paper is to develop a version of FSP which we refer to as the stationary FSP (sFSP) that allows one to obtain accurate approximations of the stationary solutions of a CME by solving a finite linear-algebraic system that yields the stationary distribution of a continuous-time Markov chain over the truncated state-space. We derive bounds for the approximation error incurred by sFSP and we establish that under certain stability conditions, these errors can be made arbitrarily small by appropriately expanding the truncated state-space. We provide several examples to illustrate our sFSP method and demonstrate its efficiency in estimating the stationary distributions. In particular, we show that using a quantised tensor train (QTT) implementation of our sFSP method, problems admitting more than 100 million states can be efficiently solved.Comment: 8 figure

    MCMC inference for Markov Jump Processes via the Linear Noise Approximation

    Full text link
    Bayesian analysis for Markov jump processes is a non-trivial and challenging problem. Although exact inference is theoretically possible, it is computationally demanding thus its applicability is limited to a small class of problems. In this paper we describe the application of Riemann manifold MCMC methods using an approximation to the likelihood of the Markov jump process which is valid when the system modelled is near its thermodynamic limit. The proposed approach is both statistically and computationally efficient while the convergence rate and mixing of the chains allows for fast MCMC inference. The methodology is evaluated using numerical simulations on two problems from chemical kinetics and one from systems biology
    corecore