899 research outputs found

    A localized orthogonal decomposition method for semi-linear elliptic problems

    Get PDF
    In this paper we propose and analyze a new Multiscale Method for solving semi-linear elliptic problems with heterogeneous and highly variable coefficient functions. For this purpose we construct a generalized finite element basis that spans a low dimensional multiscale space. The basis is assembled by performing localized linear fine-scale computations in small patches that have a diameter of order H |log H| where H is the coarse mesh size. Without any assumptions on the type of the oscillations in the coefficients, we give a rigorous proof for a linear convergence of the H1-error with respect to the coarse mesh size. To solve the arising equations, we propose an algorithm that is based on a damped Newton scheme in the multiscale space

    Homogenization of Parabolic Equations with a Continuum of Space and Time Scales

    Get PDF
    This paper addresses the issue of the homogenization of linear divergence form parabolic operators in situations where no ergodicity and no scale separation in time or space are available. Namely, we consider divergence form linear parabolic operators in ΩRn\Omega \subset \mathbb{R}^n with L(Ω×(0,T))L^\infty(\Omega \times (0,T))-coefficients. It appears that the inverse operator maps the unit ball of L2(Ω×(0,T))L^2(\Omega\times (0,T)) into a space of functions which at small (time and space) scales are close in H1H^1 norm to a functional space of dimension nn. It follows that once one has solved these equations at least nn times it is possible to homogenize them both in space and in time, reducing the number of operation counts necessary to obtain further solutions. In practice we show under a Cordes-type condition that the first order time derivatives and second order space derivatives of the solution of these operators with respect to caloric coordinates are in L2L^2 (instead of H1H^{-1} with Euclidean coordinates). If the medium is time-independent, then it is sufficient to solve nn times the associated elliptic equation in order to homogenize the parabolic equation

    Corrector Analysis of a Heterogeneous Multi-scale Scheme for Elliptic Equations with Random Potential

    Full text link
    This paper analyzes the random fluctuations obtained by a heterogeneous multi-scale first-order finite element method applied to solve elliptic equations with a random potential. We show that the random fluctuations of such solutions are correctly estimated by the heterogeneous multi-scale algorithm when appropriate fine-scale problems are solved on subsets that cover the whole computational domain. However, when the fine-scale problems are solved over patches that do not cover the entire domain, the random fluctuations may or may not be estimated accurately. In the case of random potentials with short-range interactions, the variance of the random fluctuations is amplified as the inverse of the fraction of the medium covered by the patches. In the case of random potentials with long-range interactions, however, such an amplification does not occur and random fluctuations are correctly captured independent of the (macroscopic) size of the patches. These results are consistent with those obtained by the authors for more general equations in the one-dimensional setting and provide indications on the loss in accuracy that results from using coarser, and hence less computationally intensive, algorithms

    Localized bases for finite dimensional homogenization approximations with non-separated scales and high-contrast

    Get PDF
    We construct finite-dimensional approximations of solution spaces of divergence form operators with LL^\infty-coefficients. Our method does not rely on concepts of ergodicity or scale-separation, but on the property that the solution space of these operators is compactly embedded in H1H^1 if source terms are in the unit ball of L2L^2 instead of the unit ball of H1H^{-1}. Approximation spaces are generated by solving elliptic PDEs on localized sub-domains with source terms corresponding to approximation bases for H2H^2. The H1H^1-error estimates show that O(hd)\mathcal{O}(h^{-d})-dimensional spaces with basis elements localized to sub-domains of diameter O(hαln1h)\mathcal{O}(h^\alpha \ln \frac{1}{h}) (with α[1/2,1)\alpha \in [1/2,1)) result in an O(h22α)\mathcal{O}(h^{2-2\alpha}) accuracy for elliptic, parabolic and hyperbolic problems. For high-contrast media, the accuracy of the method is preserved provided that localized sub-domains contain buffer zones of width O(hαln1h)\mathcal{O}(h^\alpha \ln \frac{1}{h}) where the contrast of the medium remains bounded. The proposed method can naturally be generalized to vectorial equations (such as elasto-dynamics).Comment: Accepted for publication in SIAM MM

    An analysis of a class of variational multiscale methods based on subspace decomposition

    Get PDF
    Numerical homogenization tries to approximate the solutions of elliptic partial differential equations with strongly oscillating coefficients by functions from modified finite element spaces. We present in this paper a class of such methods that are very closely related to the method of M{\aa}lqvist and Peterseim [Math. Comp. 83, 2014]. Like the method of M{\aa}lqvist and Peterseim, these methods do not make explicit or implicit use of a scale separation. Their compared to that in the work of M{\aa}lqvist and Peterseim strongly simplified analysis is based on a reformulation of their method in terms of variational multiscale methods and on the theory of iterative methods, more precisely, of additive Schwarz or subspace decomposition methods.Comment: published electronically in Mathematics of Computation on January 19, 201
    corecore