4,382 research outputs found

    DISCO: Distributed Multi-domain SDN Controllers

    Full text link
    Modern multi-domain networks now span over datacenter networks, enterprise networks, customer sites and mobile entities. Such networks are critical and, thus, must be resilient, scalable and easily extensible. The emergence of Software-Defined Networking (SDN) protocols, which enables to decouple the data plane from the control plane and dynamically program the network, opens up new ways to architect such networks. In this paper, we propose DISCO, an open and extensible DIstributed SDN COntrol plane able to cope with the distributed and heterogeneous nature of modern overlay networks and wide area networks. DISCO controllers manage their own network domain and communicate with each others to provide end-to-end network services. This communication is based on a unique lightweight and highly manageable control channel used by agents to self-adaptively share aggregated network-wide information. We implemented DISCO on top of the Floodlight OpenFlow controller and the AMQP protocol. We demonstrated how DISCO's control plane dynamically adapts to heterogeneous network topologies while being resilient enough to survive to disruptions and attacks and providing classic functionalities such as end-point migration and network-wide traffic engineering. The experimentation results we present are organized around three use cases: inter-domain topology disruption, end-to-end priority service request and virtual machine migration

    On the Design of Clean-Slate Network Control and Management Plane

    Get PDF
    We provide a design of clean-slate control and management plane for data networks using the abstraction of 4D architecture, utilizing and extending 4D’s concept of a logically centralized Decision plane that is responsible for managing network-wide resources. In this paper, a scalable protocol and a dynamically adaptable algorithm for assigning Data plane devices to a physically distributed Decision plane are investigated, that enable a network to operate with minimal configuration and human intervention while providing optimal convergence and robustness against failures. Our work is especially relevant in the context of ISPs and large geographically dispersed enterprise networks. We also provide an extensive evaluation of our algorithm using real-world and artificially generated ISP topologies along with an experimental evaluation using ns-2 simulator

    Deliverable JRA1.1: Evaluation of current network control and management planes for multi-domain network infrastructure

    Get PDF
    This deliverable includes a compilation and evaluation of available control and management architectures and protocols applicable to a multilayer infrastructure in a multi-domain Virtual Network environment.The scope of this deliverable is mainly focused on the virtualisation of the resources within a network and at processing nodes. The virtualization of the FEDERICA infrastructure allows the provisioning of its available resources to users by means of FEDERICA slices. A slice is seen by the user as a real physical network under his/her domain, however it maps to a logical partition (a virtual instance) of the physical FEDERICA resources. A slice is built to exhibit to the highest degree all the principles applicable to a physical network (isolation, reproducibility, manageability, ...). Currently, there are no standard definitions available for network virtualization or its associated architectures. Therefore, this deliverable proposes the Virtual Network layer architecture and evaluates a set of Management- and Control Planes that can be used for the partitioning and virtualization of the FEDERICA network resources. This evaluation has been performed taking into account an initial set of FEDERICA requirements; a possible extension of the selected tools will be evaluated in future deliverables. The studies described in this deliverable define the virtual architecture of the FEDERICA infrastructure. During this activity, the need has been recognised to establish a new set of basic definitions (taxonomy) for the building blocks that compose the so-called slice, i.e. the virtual network instantiation (which is virtual with regard to the abstracted view made of the building blocks of the FEDERICA infrastructure) and its architectural plane representation. These definitions will be established as a common nomenclature for the FEDERICA project. Other important aspects when defining a new architecture are the user requirements. It is crucial that the resulting architecture fits the demands that users may have. Since this deliverable has been produced at the same time as the contact process with users, made by the project activities related to the Use Case definitions, JRA1 has proposed a set of basic Use Cases to be considered as starting point for its internal studies. When researchers want to experiment with their developments, they need not only network resources on their slices, but also a slice of the processing resources. These processing slice resources are understood as virtual machine instances that users can use to make them behave as software routers or end nodes, on which to download the software protocols or applications they have produced and want to assess in a realistic environment. Hence, this deliverable also studies the APIs of several virtual machine management software products in order to identify which best suits FEDERICA’s needs.Postprint (published version

    Multi-Path Alpha-Fair Resource Allocation at Scale in Distributed Software Defined Networks

    Get PDF
    The performance of computer networks relies on how bandwidth is shared among different flows. Fair resource allocation is a challenging problem particularly when the flows evolve over time. To address this issue, bandwidth sharing techniques that quickly react to the traffic fluctuations are of interest, especially in large scale settings with hundreds of nodes and thousands of flows. In this context, we propose a distributed algorithm based on the Alternating Direction Method of Multipliers (ADMM) that tackles the multi-path fair resource allocation problem in a distributed SDN control architecture. Our ADMM-based algorithm continuously generates a sequence of resource allocation solutions converging to the fair allocation while always remaining feasible, a property that standard primal-dual decomposition methods often lack. Thanks to the distribution of all computer intensive operations, we demonstrate that we can handle large instances at scale

    IPv6 Network Mobility

    Get PDF
    Network Authentication, Authorization, and Accounting has been used since before the days of the Internet as we know it today. Authentication asks the question, “Who or what are you?” Authorization asks, “What are you allowed to do?” And fi nally, accounting wants to know, “What did you do?” These fundamental security building blocks are being used in expanded ways today. The fi rst part of this two-part series focused on the overall concepts of AAA, the elements involved in AAA communications, and highlevel approaches to achieving specifi c AAA goals. It was published in IPJ Volume 10, No. 1[0]. This second part of the series discusses the protocols involved, specifi c applications of AAA, and considerations for the future of AAA
    • …
    corecore