3,858 research outputs found

    Nonasymptotic analysis of adaptive and annealed Feynman-Kac particle models

    Full text link
    Sequential and quantum Monte Carlo methods, as well as genetic type search algorithms can be interpreted as a mean field and interacting particle approximations of Feynman-Kac models in distribution spaces. The performance of these population Monte Carlo algorithms is strongly related to the stability properties of nonlinear Feynman-Kac semigroups. In this paper, we analyze these models in terms of Dobrushin ergodic coefficients of the reference Markov transitions and the oscillations of the potential functions. Sufficient conditions for uniform concentration inequalities w.r.t. time are expressed explicitly in terms of these two quantities. We provide an original perturbation analysis that applies to annealed and adaptive Feynman-Kac models, yielding what seems to be the first results of this kind for these types of models. Special attention is devoted to the particular case of Boltzmann-Gibbs measures' sampling. In this context, we design an explicit way of tuning the number of Markov chain Monte Carlo iterations with temperature schedule. We also design an alternative interacting particle method based on an adaptive strategy to define the temperature increments. The theoretical analysis of the performance of this adaptive model is much more involved as both the potential functions and the reference Markov transitions now depend on the random evolution on the particle model. The nonasymptotic analysis of these complex adaptive models is an open research problem. We initiate this study with the concentration analysis of a simplified adaptive models based on reference Markov transitions that coincide with the limiting quantities, as the number of particles tends to infinity.Comment: Published at http://dx.doi.org/10.3150/14-BEJ680 in the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm

    Stationary probability density of stochastic search processes in global optimization

    Full text link
    A method for the construction of approximate analytical expressions for the stationary marginal densities of general stochastic search processes is proposed. By the marginal densities, regions of the search space that with high probability contain the global optima can be readily defined. The density estimation procedure involves a controlled number of linear operations, with a computational cost per iteration that grows linearly with problem size

    Hypocoercivity in metastable settings and kinetic simulated annealing

    Full text link
    Combining classical arguments for the analysis of the simulated annealing algorithm with the more recent hypocoercive method of distorted entropy, we prove the convergence for large time of the kinetic Langevin annealing with logarithmic cooling schedule

    Modelling and estimation for random fields

    Get PDF
    Caption title.Includes bibliographical references (p. [21]-[22]).Supported by Air Force Office of Scientific Research. AFOSR-89-0276-C Supported by the Army Research Office. DAAL03-92-G-0115Sanjoy K. Mitter
    corecore