1,448 research outputs found

    Incremental Stochastic Subgradient Algorithms for Convex Optimization

    Full text link
    In this paper we study the effect of stochastic errors on two constrained incremental sub-gradient algorithms. We view the incremental sub-gradient algorithms as decentralized network optimization algorithms as applied to minimize a sum of functions, when each component function is known only to a particular agent of a distributed network. We first study the standard cyclic incremental sub-gradient algorithm in which the agents form a ring structure and pass the iterate in a cycle. We consider the method with stochastic errors in the sub-gradient evaluations and provide sufficient conditions on the moments of the stochastic errors that guarantee almost sure convergence when a diminishing step-size is used. We also obtain almost sure bounds on the algorithm's performance when a constant step-size is used. We then consider \ram{the} Markov randomized incremental subgradient method, which is a non-cyclic version of the incremental algorithm where the sequence of computing agents is modeled as a time non-homogeneous Markov chain. Such a model is appropriate for mobile networks, as the network topology changes across time in these networks. We establish the convergence results and error bounds for the Markov randomized method in the presence of stochastic errors for diminishing and constant step-sizes, respectively

    An Infeasible-Point Subgradient Method Using Adaptive Approximate Projections

    Full text link
    We propose a new subgradient method for the minimization of nonsmooth convex functions over a convex set. To speed up computations we use adaptive approximate projections only requiring to move within a certain distance of the exact projections (which decreases in the course of the algorithm). In particular, the iterates in our method can be infeasible throughout the whole procedure. Nevertheless, we provide conditions which ensure convergence to an optimal feasible point under suitable assumptions. One convergence result deals with step size sequences that are fixed a priori. Two other results handle dynamic Polyak-type step sizes depending on a lower or upper estimate of the optimal objective function value, respectively. Additionally, we briefly sketch two applications: Optimization with convex chance constraints, and finding the minimum l1-norm solution to an underdetermined linear system, an important problem in Compressed Sensing.Comment: 36 pages, 3 figure

    Convex optimization over intersection of simple sets: improved convergence rate guarantees via an exact penalty approach

    Full text link
    We consider the problem of minimizing a convex function over the intersection of finitely many simple sets which are easy to project onto. This is an important problem arising in various domains such as machine learning. The main difficulty lies in finding the projection of a point in the intersection of many sets. Existing approaches yield an infeasible point with an iteration-complexity of O(1/ε2)O(1/\varepsilon^2) for nonsmooth problems with no guarantees on the in-feasibility. By reformulating the problem through exact penalty functions, we derive first-order algorithms which not only guarantees that the distance to the intersection is small but also improve the complexity to O(1/ε)O(1/\varepsilon) and O(1/ε)O(1/\sqrt{\varepsilon}) for smooth functions. For composite and smooth problems, this is achieved through a saddle-point reformulation where the proximal operators required by the primal-dual algorithms can be computed in closed form. We illustrate the benefits of our approach on a graph transduction problem and on graph matching
    corecore