3,021 research outputs found

    Balancing Speed and Quality in Online Learning to Rank for Information Retrieval

    Full text link
    In Online Learning to Rank (OLTR) the aim is to find an optimal ranking model by interacting with users. When learning from user behavior, systems must interact with users while simultaneously learning from those interactions. Unlike other Learning to Rank (LTR) settings, existing research in this field has been limited to linear models. This is due to the speed-quality tradeoff that arises when selecting models: complex models are more expressive and can find the best rankings but need more user interactions to do so, a requirement that risks frustrating users during training. Conversely, simpler models can be optimized on fewer interactions and thus provide a better user experience, but they will converge towards suboptimal rankings. This tradeoff creates a deadlock, since novel models will not be able to improve either the user experience or the final convergence point, without sacrificing the other. Our contribution is twofold. First, we introduce a fast OLTR model called Sim-MGD that addresses the speed aspect of the speed-quality tradeoff. Sim-MGD ranks documents based on similarities with reference documents. It converges rapidly and, hence, gives a better user experience but it does not converge towards the optimal rankings. Second, we contribute Cascading Multileave Gradient Descent (C-MGD) for OLTR that directly addresses the speed-quality tradeoff by using a cascade that enables combinations of the best of two worlds: fast learning and high quality final convergence. C-MGD can provide the better user experience of Sim-MGD while maintaining the same convergence as the state-of-the-art MGD model. This opens the door for future work to design new models for OLTR without having to deal with the speed-quality tradeoff.Comment: CIKM 2017, Proceedings of the 2017 ACM on Conference on Information and Knowledge Managemen

    Learning to Prevent Monocular SLAM Failure using Reinforcement Learning

    Full text link
    Monocular SLAM refers to using a single camera to estimate robot ego motion while building a map of the environment. While Monocular SLAM is a well studied problem, automating Monocular SLAM by integrating it with trajectory planning frameworks is particularly challenging. This paper presents a novel formulation based on Reinforcement Learning (RL) that generates fail safe trajectories wherein the SLAM generated outputs do not deviate largely from their true values. Quintessentially, the RL framework successfully learns the otherwise complex relation between perceptual inputs and motor actions and uses this knowledge to generate trajectories that do not cause failure of SLAM. We show systematically in simulations how the quality of the SLAM dramatically improves when trajectories are computed using RL. Our method scales effectively across Monocular SLAM frameworks in both simulation and in real world experiments with a mobile robot.Comment: Accepted at the 11th Indian Conference on Computer Vision, Graphics and Image Processing (ICVGIP) 2018 More info can be found at the project page at https://robotics.iiit.ac.in/people/vignesh.prasad/SLAMSafePlanner.html and the supplementary video can be found at https://www.youtube.com/watch?v=420QmM_Z8v

    SOVEREIGN: A Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goal-Oriented Navigation System

    Full text link
    Both animals and mobile robots, or animats, need adaptive control systems to guide their movements through a novel environment. Such control systems need reactive mechanisms for exploration, and learned plans to efficiently reach goal objects once the environment is familiar. How reactive and planned behaviors interact together in real time, and arc released at the appropriate times, during autonomous navigation remains a major unsolved problern. This work presents an end-to-end model to address this problem, named SOVEREIGN: A Self-Organizing, Vision, Expectation, Recognition, Emotion, Intelligent, Goal-oriented Navigation system. The model comprises several interacting subsystems, governed by systems of nonlinear differential equations. As the animat explores the environment, a vision module processes visual inputs using networks that arc sensitive to visual form and motion. Targets processed within the visual form system arc categorized by real-time incremental learning. Simultaneously, visual target position is computed with respect to the animat's body. Estimates of target position activate a motor system to initiate approach movements toward the target. Motion cues from animat locomotion can elicit orienting head or camera movements to bring a never target into view. Approach and orienting movements arc alternately performed during animat navigation. Cumulative estimates of each movement, based on both visual and proprioceptive cues, arc stored within a motor working memory. Sensory cues are stored in a parallel sensory working memory. These working memories trigger learning of sensory and motor sequence chunks, which together control planned movements. Effective chunk combinations arc selectively enhanced via reinforcement learning when the animat is rewarded. The planning chunks effect a gradual transition from reactive to planned behavior. The model can read-out different motor sequences under different motivational states and learns more efficient paths to rewarded goals as exploration proceeds. Several volitional signals automatically gate the interactions between model subsystems at appropriate times. A 3-D visual simulation environment reproduces the animat's sensory experiences as it moves through a simplified spatial environment. The SOVEREIGN model exhibits robust goal-oriented learning of sequential motor behaviors. Its biomimctic structure explicates a number of brain processes which are involved in spatial navigation.Advanced Research Projects Agency (N00014-92-J-4015); Air Force Office of Scientific Research (F49620-92-J-0225, F49620-01-1-0397); National Science Foundation (IRI 90-24877, SBE-0354378); Office of Naval Research (N00014-91-J-4100, N00014-92-J-1309, N00014-95-1-0657, N00014-01-1-0624); Pacific Sierra Research (PSR 91-6075-2

    Driving with Style: Inverse Reinforcement Learning in General-Purpose Planning for Automated Driving

    Full text link
    Behavior and motion planning play an important role in automated driving. Traditionally, behavior planners instruct local motion planners with predefined behaviors. Due to the high scene complexity in urban environments, unpredictable situations may occur in which behavior planners fail to match predefined behavior templates. Recently, general-purpose planners have been introduced, combining behavior and local motion planning. These general-purpose planners allow behavior-aware motion planning given a single reward function. However, two challenges arise: First, this function has to map a complex feature space into rewards. Second, the reward function has to be manually tuned by an expert. Manually tuning this reward function becomes a tedious task. In this paper, we propose an approach that relies on human driving demonstrations to automatically tune reward functions. This study offers important insights into the driving style optimization of general-purpose planners with maximum entropy inverse reinforcement learning. We evaluate our approach based on the expected value difference between learned and demonstrated policies. Furthermore, we compare the similarity of human driven trajectories with optimal policies of our planner under learned and expert-tuned reward functions. Our experiments show that we are able to learn reward functions exceeding the level of manual expert tuning without prior domain knowledge.Comment: Appeared at IROS 2019. Accepted version. Added/updated footnote, minor correction in preliminarie

    Prescribed Performance Control Guided Policy Improvement for Satisfying Signal Temporal Logic Tasks

    Full text link
    Signal temporal logic (STL) provides a user-friendly interface for defining complex tasks for robotic systems. Recent efforts aim at designing control laws or using reinforcement learning methods to find policies which guarantee satisfaction of these tasks. While the former suffer from the trade-off between task specification and computational complexity, the latter encounter difficulties in exploration as the tasks become more complex and challenging to satisfy. This paper proposes to combine the benefits of the two approaches and use an efficient prescribed performance control (PPC) base law to guide exploration within the reinforcement learning algorithm. The potential of the method is demonstrated in a simulated environment through two sample navigational tasks.Comment: This is the extended version of the paper accepted to the 2019 American Control Conference (ACC), Philadelphia (to be published
    corecore