21,012 research outputs found

    Global Asymptotic Behavior of Iterative Implicit Schemes

    Get PDF
    The global asymptotic nonlinear behavior of some standard iterative procedures in solving nonlinear systems of algebraic equations arising from four implicit linear multistep methods (LMMs) in discretizing three models of 2 x 2 systems of first-order autonomous nonlinear ordinary differential equations (ODEs) is analyzed using the theory of dynamical systems. The iterative procedures include simple iteration and full and modified Newton iterations. The results are compared with standard Runge-Kutta explicit methods, a noniterative implicit procedure, and the Newton method of solving the steady part of the ODEs. Studies showed that aside from exhibiting spurious asymptotes, all of the four implicit LMMs can change the type and stability of the steady states of the differential equations (DEs). They also exhibit a drastic distortion but less shrinkage of the basin of attraction of the true solution than standard nonLMM explicit methods. The simple iteration procedure exhibits behavior which is similar to standard nonLMM explicit methods except that spurious steady-state numerical solutions cannot occur. The numerical basins of attraction of the noniterative implicit procedure mimic more closely the basins of attraction of the DEs and are more efficient than the three iterative implicit procedures for the four implicit LMMs. Contrary to popular belief, the initial data using the Newton method of solving the steady part of the DEs may not have to be close to the exact steady state for convergence. These results can be used as an explanation for possible causes and cures of slow convergence and nonconvergence of steady-state numerical solutions when using an implicit LMM time-dependent approach in computational fluid dynamics

    An Efficient Policy Iteration Algorithm for Dynamic Programming Equations

    Full text link
    We present an accelerated algorithm for the solution of static Hamilton-Jacobi-Bellman equations related to optimal control problems. Our scheme is based on a classic policy iteration procedure, which is known to have superlinear convergence in many relevant cases provided the initial guess is sufficiently close to the solution. In many cases, this limitation degenerates into a behavior similar to a value iteration method, with an increased computation time. The new scheme circumvents this problem by combining the advantages of both algorithms with an efficient coupling. The method starts with a value iteration phase and then switches to a policy iteration procedure when a certain error threshold is reached. A delicate point is to determine this threshold in order to avoid cumbersome computation with the value iteration and, at the same time, to be reasonably sure that the policy iteration method will finally converge to the optimal solution. We analyze the methods and efficient coupling in a number of examples in dimension two, three and four illustrating its properties

    Application of projection algorithms to differential equations: boundary value problems

    Full text link
    The Douglas-Rachford method has been employed successfully to solve many kinds of non-convex feasibility problems. In particular, recent research has shown surprising stability for the method when it is applied to finding the intersections of hypersurfaces. Motivated by these discoveries, we reformulate a second order boundary valued problem (BVP) as a feasibility problem where the sets are hypersurfaces. We show that such a problem may always be reformulated as a feasibility problem on no more than three sets and is well-suited to parallelization. We explore the stability of the method by applying it to several examples of BVPs, including cases where the traditional Newton's method fails

    A multigrid continuation method for elliptic problems with folds

    Get PDF
    We introduce a new multigrid continuation method for computing solutions of nonlinear elliptic eigenvalue problems which contain limit points (also called turning points or folds). Our method combines the frozen tau technique of Brandt with pseudo-arc length continuation and correction of the parameter on the coarsest grid. This produces considerable storage savings over direct continuation methods,as well as better initial coarse grid approximations, and avoids complicated algorithms for determining the parameter on finer grids. We provide numerical results for second, fourth and sixth order approximations to the two-parameter, two-dimensional stationary reaction-diffusion problem: Δu+λ exp(u/(1+au)) = 0. For the higher order interpolations we use bicubic and biquintic splines. The convergence rate is observed to be independent of the occurrence of limit points
    • …
    corecore