1,423 research outputs found

    AnĂĄlisis de sistemas dinĂĄmicos infinito-dimensionales asociados a ecuaciones en derivadas parciales funcionales.

    Get PDF
    Based on the theory of functional diferential equations, theory of semigroup, theory of random dynamical systems and theory of in nite dimensional dynamical systems, this thesis studies the long time behavior of several kinds of in nite dimensional dynamical systems associated to partial diferential equations containing some kinds of hereditary characteristics (such as variable delay, distributed delay or memory, etc), including existence and upper semicontinuity of pullback/random attractors and the stability analysis of stationary (steady-state) solutions. Three important mathematical-phyiscal models are considered, namely, reaction-di usion equation, 2D-Navier-Stokes equation as well as in-compressible non-Newtonian uids. Chapter 1 is devoted to the dynamics of an integer order stochastic reaction-difusion equation with thermal memory when the nonlinear term is subcritical or critical. Notice that our model contains not only memory but also white noise, which means it is not easy to prove the existence and uniqueness of solutions directly. In order to deal with this problem, we need introduce a new variable to transform our model into a system with two equations, and we use the Ornstein-Uhlenbeck to transfer this system into a deterministic ones only with random parameter. Then a semigroup method together with the Lax-Milgram theorem is applied to prove the existence, uniqueness and continuity of mild solutions. Next, the dynamics of solutions is analyzed by a priori estimates, and the existence of pullback random attractors is established. Besides, we prove that this pullback random attractors cannot explode, a property known as upper semicontinuity. But the dimension of the random attractor is still unknown. On the other hand, it has been proved that sometimes, especially when self-orgnization phenomena, anisotropic di usion, anomalous difusion occurs, a fractional order diferential equation can model this phenomena more precisely than a integer one. Hence, in Chapter 2, we focus on the asymptotical behavior of a fractional stochastic reaction-difusion equation with memory, which is also called fractional integro-diferential equation. First of all, the Ornstein-Uhlenbeck is applied to change the stochastic reaction-difusion equation into a deterministic ones, which makes it more convenient to solve. Then existence and uniqueness of mild solutions is proved by using the Lumer-Phillips theorem. Next, under appropriate assumptions on the memory kernel and on the magnitude of the nonlinearity, the existence of random attractor is achieved by obtaining some uniform estimates and solutions decomposition. Moreover, the random attractor is shown to have nite Hausdorf dimension, which means the asymptotic behavior of the system is determined by only a nite number of degrees of freedom, though the random attractor is a subset of an in nite-dimensional phase space. But we still wonder whether this random attractor has inertial manifolds, which means this random attractor needs to be exponentially attracting. Besides, the long time behavior of time-fractional reaction-difusion equation and fractional Brownian motion are still unknown. The rst two chapters consider an important partial function diferential equations with in nite distributed delay. However, partial functional diferential equations include more than only distributed delays; for instance, also variable delay terms can be considered. Therefore, in the next chapter, we consider another signi cant partial functional diferential equation but with variable delay. In Chapter 3, we discuss the stability of stationary solutions to 2D Navier-Stokes equations when the external force contains unbounded variable delay. Notice that the classic phase space C which is used to deal with diferential equations with in nite delay does not work well for our unbounded variable delay case. Instead, we choose the phase space of continuous bounded functions with limits at1. Then the existence and uni- queness of solutions is proved by Galerkin approximations and the energy method. The existence of stationary solutions is established by means of the Lax-Milgram theorem and the Schauder xed point theorem. Afterward, the local stability analysis of stationary solutions is carried out by three diferent approaches: the classical Lyapunov function method, the Razumikhin-Lyapunov technique and by constructing appropriate Lyapunov functionals. It worths mentioning that the classical Lyapunov function method requires diferentiability of delay term, which in some extent is restrictive. Fortunately, we could utilize Razumikhin-Lyapunov argument to weak this condition, and only requires continuity of every operators of this equation but allows more general delay. Neverheless, by these methods, the best result we can obtain is the asymptotical stability of stationary solutions by constructing a suitable Lyapunov functionals. Fortunately, we could obtain polynomial stability of the steady-state in a particular case of unbounded variable delay, namely, the proportional delay. However, the exponential stability of stationary solutions to Navier-Stokes equation with unbounded variable delay still seems an open problem. We can also wonder about the stability of stationary solutions to 2D Navier-Stokes equations with unbounded delay when it is perturbed by random noise. Therefore, in Chapter 4, a stochastic 2D Navier-Stokes equation with unbounded delay is analyzed in the phase space of continuous bounded functions with limits at1. Because of the perturbation of random noise, the classical Galerkin approximations alone is not enough to prove the existence and uniqueness of weak solutions. By combing a technical lemma and Faedo-Galerkin approach, the existence and uniqueness of weak solutions is obtained. Next, the local stability analysis of constant solutions (equilibria) is carried out by exploiting two methods. Namely, the Lyapunov function method and by constructing appropriate Lyapunov functionals. Although it is not possible, in general, to establish the exponential convergence of the stationary solutions, the polynomial convergence towards the stationary solutions, in a particular case of unbounded variable delay can be proved. We would like to point out that the Razumikhin argument cannot be applied to analyze directly the stability of stationary solutions to stochastic equations as we did to deterministic equations. Actually, we need more technical, and this will be our forthcoming paper. We also would like to mention that exponential stability of other special cases of in nite delay remains as an open problem for both the deterministic and stochastic cases. Especially, we are interested in the pantograph equation, which is a typical but simple unbounded variable delayed diferential equation.We believe that the study of pantograph equation can help us to improve our knowledge about 2D{Navier-Stokes equations with unbounded delay. Notice that Chapter 3 and Chapter 4 are both concerned with delayed Navier-Stokes equations, which is a very important Newtonian uids, and it is extensively applied in physics, chemistry, medicine, etc. However, there are also many important uids, such as blood, polymer solutions, and biological uids, etc, whose motion cannot be modeled pre- cisely by Newtonian uids but by non-Newtonian uids. Hence, in the next two chapters, we are interested in the long time behavior of an incompressible non-Newtonian uids ith delay. In Chapter 5, we study the dynamics of non-autonomous incompressible non-Newtonian uids with nite delay. The existence of global solution is showed by classical Galerkin approximations and the energy method. Actually, we also prove the uniqueness of solutions as well as the continuous dependence of solutions on the initial value. Then, the existence of pullback attractors for the non-autonomous dynamical system associated to this problem is established under a weaker condition in space C([h; 0];H2) rather than space C([h; 0];L2), and this improves the available results that worked on non-Newtonian uids. However, we still would like to analyze the Hausdor dimension or fractal dimension of the pullback attractor, as well as the existence of inertial manifolds and morsedecomposition. Finally, in Chapter 6, we consider the exponential stability of an incompressible non Newtonian uids with nite delay. The existence and uniqueness of stationary solutions are rst established, and this is not an obvious and straightforward work because of the nonlinearity and the complexity of the term N(u). The exponential stability of steady state solutions is then analyzed by means of four diferent approaches. The rst one is the classical Lyapunov function method, which requires the diferentiability of the delay term. But this may seem a very restrictive condition. Luckily, we could use a Razumikhin type argument to weaken this condition, but allow for more general types of delay. In fact, we could obtain a better stability result by this technique. Then, a method relying on the construction of Lyapunov functionals and another one using a Gronwall-like lemma are also exploited to study the stability, respectively. We would like to emphasize that by using a Gronwall-like lemma, only the measurability of delay term is demanded, but still ensure the exponential stability. Furthermore, we also would like to discuss the dynamics of stochastic non-Newtonian uids with both nite delay and in nite delay. All the problems deserve our attraction, and actually, these are our forthcoming work

    Numerical Simulation for a Multidimensional Fourth-Order Nonlinear Fractional Subdiffusion Model with Time Delay

    Full text link
    The purpose of this paper is to develop a numerical scheme for the two-dimensional fourth-order fractional subdiffusion equation with variable coefficients and delay. Using the L2 − 1σ approximation of the time Caputo derivative, a finite difference method with second-order accuracy in the temporal direction is achieved. The novelty of this paper is to introduce a numerical scheme for the problem under consideration with variable coefficients, nonlinear source term, and delay time constant. The numerical results show that the global convergence orders for spatial and time dimensions are approximately fourth order in space and second-order in time. © 2021 by the authors. Licensee MDPI, Basel, Switzerland.Acknowledgments: M.A.Z. wishes to acknowledge the support of Nazarbayev University Program 091019CRP2120 and the partial support of the Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan (Grant “Dynamical Analysis and Synchronization of Complex Neural Networks with Its Applications”). M.A.Z. wishes also to acknowledge the financial support of the National Research Centre of Egypt (NRC)

    Theoretical analysis (Convergence and stability) of a difference approximation for multiterm time fractional convection diffusion-wave equations with delay

    Get PDF
    In this paper, we introduce a high order numerical approximation method for convection diffusion wave equations armed with a multiterm time fractional Caputo operator and a nonlinear fixed time delay. A temporal second-order scheme which is behaving linearly is derived and analyzed for the problem under consideration based on a combination of the formula of L2 − 1σ and the order reduction technique. By means of the discrete energy method, convergence and stability of the proposed compact difference scheme are estimated unconditionally. A numerical example is provided to illustrate the theoretical results. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.The first author wishes to acknowledge the support of RFBR Grant 19-01-00019

    New developments in Functional and Fractional Differential Equations and in Lie Symmetry

    Get PDF
    Delay, difference, functional, fractional, and partial differential equations have many applications in science and engineering. In this Special Issue, 29 experts co-authored 10 papers dealing with these subjects. A summary of the main points of these papers follows:Several oscillation conditions for a first-order linear differential equation with non-monotone delay are established in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, whereas a sharp oscillation criterion using the notion of slowly varying functions is established in A Sharp Oscillation Criterion for a Linear Differential Equation with Variable Delay. The approximation of a linear autonomous differential equation with a small delay is considered in Approximation of a Linear Autonomous Differential Equation with Small Delay; the model of infection diseases by Marchuk is studied in Around the Model of Infection Disease: The Cauchy Matrix and Its Properties. Exact solutions to fractional-order Fokker–Planck equations are presented in New Exact Solutions and Conservation Laws to the Fractional-Order Fokker–Planck Equations, and a spectral collocation approach to solving a class of time-fractional stochastic heat equations driven by Brownian motion is constructed in A Collocation Approach for Solving Time-Fractional Stochastic Heat Equation Driven by an Additive Noise. A finite difference approximation method for a space fractional convection-diffusion model with variable coefficients is proposed in Finite Difference Approximation Method for a Space Fractional Convection–Diffusion Equation with Variable Coefficients; existence results for a nonlinear fractional difference equation with delay and impulses are established in On Nonlinear Fractional Difference Equation with Delay and Impulses. A complete Noether symmetry analysis of a generalized coupled Lane–Emden–Klein–Gordon–Fock system with central symmetry is provided in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, and new soliton solutions of a fractional Jaulent soliton Miodek system via symmetry analysis are presented in New Soliton Solutions of Fractional Jaulent-Miodek System with Symmetry Analysis

    Alikhanov Legendre–Galerkin spectral method for the coupled nonlinear time-space fractional Ginzburg–Landau complex system

    Get PDF
    A finite difference/Galerkin spectral discretization for the temporal and spatial fractional coupled Ginzburg-Landau system is proposed and analyzed. The Alikhanov L2-1 sigma difference formula is utilized to discretize the time Caputo fractional derivative, while the Legendre-Galerkin spectral approximation is used to approximate the Riesz spatial fractional operator. The scheme is shown efficiently applicable with spectral accuracy in space and second-order in time. A discrete form of the fractional Gronwall inequality is applied to establish the error estimates of the approximate solution based on the discrete energy estimates technique. The key aspects of the implementation of the numerical continuation are complemented with some numerical experiments to confirm the theoretical claims

    A discrete Grönwall inequality and energy estimates in the analysis of a discrete model for a nonlinear time-fractional heat equation

    Full text link
    In the present work, we investigate the efficiency of a numerical scheme to solve a nonlinear time-fractional heat equation with sufficiently smooth solutions, which was previously reported in the literature [Fract. Calc. Appl. Anal. 16: 892-910 (2013)]. In that article, the authors established the stability and consistency of the discrete model using arguments from Fourier analysis. As opposed to that work, in the present work, we use the method of energy inequalities to show that the scheme is stable and converges to the exact solution with order O(τ2-α + h4), in the case that 0 < α < 1 satisfies 3α ≄ 3/2, which means that 0.369 α ≀ 1. The novelty of the present work lies in the derivation of suitable energy estimates, and a discrete fractional Grönwall inequality, which is consistent with the discrete approximation of the Caputo fractional derivative of order 0 < α < 1 used for that scheme at tk+1/2. © 2020 by the authors.The first author wishes to acknowledge the support of RFBR Grant 19-01-00019. Meanwhile, the second author would like to acknowledge the financial support of the National Council for Science and Technology of Mexico (CONACYT). The second author acknowledges financial support from CONACYT through grant A1-S-45928. Acknowledgments: The authors wish to thank the guest editors for their kind invitation to submit a paper to the special issue of Mathematics MDPI on "Computational Mathematics and Neural Systems". They also wish to thank the anonymous reviewers for their comments and criticisms. All of their comments were taken into account in the revised version of the paper, resulting in a substantial improvement with respect to the original submission

    Dynamical Systems

    Get PDF
    Complex systems are pervasive in many areas of science integrated in our daily lives. Examples include financial markets, highway transportation networks, telecommunication networks, world and country economies, social networks, immunological systems, living organisms, computational systems and electrical and mechanical structures. Complex systems are often composed of a large number of interconnected and interacting entities, exhibiting much richer global scale dynamics than the properties and behavior of individual entities. Complex systems are studied in many areas of natural sciences, social sciences, engineering and mathematical sciences. This special issue therefore intends to contribute towards the dissemination of the multifaceted concepts in accepted use by the scientific community. We hope readers enjoy this pertinent selection of papers which represents relevant examples of the state of the art in present day research. [...
    • 

    corecore