232 research outputs found

    Sufficient Conditions for Polynomial Asymptotic Behaviour of the Stochastic Pantograph Equation

    Get PDF
    This paper studies the asymptotic growth and decay properties of solutions of the stochastic pantograph equation with multiplicative noise. We give sufficient conditions on the parameters for solutions to grow at a polynomial rate in pp-th mean and in the almost sure sense. Under stronger conditions the solutions decay to zero with a polynomial rate in pp-th mean and in the almost sure sense. When polynomial bounds cannot be achieved, we show for a different set of parameters that exponential growth bounds of solutions in pp-th mean and an almost sure sense can be obtained. Analogous results are established for pantograph equations with several delays, and for general finite dimensional equations.Comment: 29 pages, to appear Electronic Journal of Qualitative Theory of Differential Equations, Proc. 10th Coll. Qualitative Theory of Diff. Equ. (July 1--4, 2015, Szeged, Hungary

    Stability of numerical method for semi-linear stochastic pantograph differential equations

    Get PDF
    Abstract As a particular expression of stochastic delay differential equations, stochastic pantograph differential equations have been widely used in nonlinear dynamics, quantum mechanics, and electrodynamics. In this paper, we mainly study the stability of analytical solutions and numerical solutions of semi-linear stochastic pantograph differential equations. Some suitable conditions for the mean-square stability of an analytical solution are obtained. Then we proved the general mean-square stability of the exponential Euler method for a numerical solution of semi-linear stochastic pantograph differential equations, that is, if an analytical solution is stable, then the exponential Euler method applied to the system is mean-square stable for arbitrary step-size h > 0 h>0h>0 . Numerical examples further illustrate the obtained theoretical results

    Nonlinear analysis of dynamical complex networks

    Get PDF
    Copyright © 2013 Zidong Wang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Complex networks are composed of a large number of highly interconnected dynamical units and therefore exhibit very complicated dynamics. Examples of such complex networks include the Internet, that is, a network of routers or domains, the World Wide Web (WWW), that is, a network of websites, the brain, that is, a network of neurons, and an organization, that is, a network of people. Since the introduction of the small-world network principle, a great deal of research has been focused on the dependence of the asymptotic behavior of interconnected oscillatory agents on the structural properties of complex networks. It has been found out that the general structure of the interaction network may play a crucial role in the emergence of synchronization phenomena in various fields such as physics, technology, and the life sciences

    Approximate solutions of hybrid stochastic pantograph equations with Levy jumps

    Get PDF
    We investigate a class of stochastic pantograph differential equations with Markovian switching and Levy jumps. We prove that the approximate solutions converge to the true solutions in 퐿 2 sense as well as in probability under local Lipschitz condition and generalize the results obtained by Fan et al. (2007), Milošević and Jovanović (2011), and Marion et al. (2002) to cover a class of more general stochastic pantograph differential equations with jumps. Finally, an illustrative example is given to demonstrate our established theory

    Approximate solutions of hybrid stochastic pantograph equations with Levy jumps

    Get PDF
    We investigate a class of stochastic pantograph differential equations with Markovian switching and Levy jumps. We prove that the approximate solutions converge to the true solutions in 퐿 2 sense as well as in probability under local Lipschitz condition and generalize the results obtained by Fan et al. (2007), Milošević and Jovanović (2011), and Marion et al. (2002) to cover a class of more general stochastic pantograph differential equations with jumps. Finally, an illustrative example is given to demonstrate our established theory

    Convergence Rate of Numerical Solutions for Nonlinear Stochastic Pantograph Equations with Markovian Switching and Jumps

    Get PDF
    The sufficient conditions of existence and uniqueness of the solutions for nonlinear stochastic pantograph equations with Markovian switching and jumps are given. It is proved that Euler-Maruyama scheme for nonlinear stochastic pantograph equations with Markovian switching and Brownian motion is of convergence with strong order 1/2. For nonlinear stochastic pantograph equations with Markovian switching and pure jumps, it is best to use the mean-square convergence, and the order of mean-square convergence is close to 1/2

    Approximate solutions of hybrid stochastic pantograph equations with Levy jumps

    Get PDF
    We investigate a class of stochastic pantograph differential equations with Markovian switching and Levy jumps. We prove that the approximate solutions converge to the true solutions in 퐿 2 sense as well as in probability under local Lipschitz condition and generalize the results obtained by Fan et al. (2007), Milošević and Jovanović (2011), and Marion et al. (2002) to cover a class of more general stochastic pantograph differential equations with jumps. Finally, an illustrative example is given to demonstrate our established theory
    corecore