1,093 research outputs found

    Recursive subdivision algorithms for curve and surface design

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.In this thesis, the author studies recursIve subdivision algorithms for curves and surfaces. Several subdivision algorithms are constructed and investigated. Some graphic examples are also presented. Inspired by the Chaikin's algorithm and the Catmull-Clark's algorithm, some non-uniform schemes, the non-uniform corner cutting scheme and the recursive subdivision algorithm for non-uniform B-spline curves, are constructed and analysed. The adapted parametrization is introduced to analyse these non-uniform algorithms. In order to solve the surface interpolation problem, the Dyn-Gregory-Levin's 4-point interpolatory scheme is generalized to surfaces and the 10-point interpolatory subdivision scheme for surfaces is formulated. The so-called Butterfly Scheme, which was firstly introduced by Dyn, Gregory Levin in 1988, is just a special case of the scheme. By studying the Cross-Differences of Directional Divided Differences, a matrix approach for analysing uniform subdivision algorithms for surfaces is established and the convergence of the 10-point scheme over both uniform and non-uniform triangular networks is studied. Another algorithm, the subdivision algorithm for uniform bi-quartic B-spline surfaces over arbitrary topology is introduced and investigated. This algorithm is a generalization of Doo-Sabin's and Catmull-Clark's algorithms. It produces uniform Bi-quartic B-spline patches over uniform data. By studying the local subdivision matrix, which is a circulant, the tangent plane and curvature properties of the limit surfaces at the so-called Extraordinary Points are studied in detail.The Chinese Educational Commission and The British Council (SBFSS/1987

    An introduction to bivariate uniform subdivision

    Get PDF

    Quasilinear subdivision schemes with applications to ENO interpolation

    Get PDF
    AbstractWe analyze the convergence and smoothness of certain class of nonlinear subdivision schemes. We study the stability properties of these schemes and apply this analysis to the specific class based on ENO and weighted-ENO interpolation techniques. Our interest in these techniques is motivated by their application to signal and image processing

    Blending isogeometric analysis and local maximum entropy meshfree approximants

    Get PDF
    We present a method to blend local maximum entropy (LME) meshfree approximants and isogeometric analysis. The coupling strategy exploits the optimization program behind LME approximation, treats isogeometric and LME basis functions on an equal footing in the reproducibility constraints, but views the former as data in the constrained minimization. The resulting scheme exploits the best features and overcomes the main drawbacks of each of these approximants. Indeed, it preserves the high fidelity boundary representation (exact CAD geometry) of isogeometric analysis, out of reach for bare meshfree methods, and easily handles volume discretization and unstructured grids with possibly local refinement, while maintaining the smoothness and non-negativity of the basis functions. We implement the method with B-Splines in two dimensions, but the procedure carries over to higher spatial dimensions or to other non-negative approximants such as NURBS or subdivision schemes. The performance of the method is illustrated with the heat equation, and linear and nonlinear elasticity. The ability of the proposed method to impose directly essential boundary conditions in non-convex domains, and to deal with unstructured grids and local refinement in domains of complex geometry and topology is highlighted by the numerical examples
    • …
    corecore