465 research outputs found

    Variational Multiscale Stabilization and the Exponential Decay of Fine-scale Correctors

    Full text link
    This paper addresses the variational multiscale stabilization of standard finite element methods for linear partial differential equations that exhibit multiscale features. The stabilization is of Petrov-Galerkin type with a standard finite element trial space and a problem-dependent test space based on pre-computed fine-scale correctors. The exponential decay of these correctors and their localisation to local cell problems is rigorously justified. The stabilization eliminates scale-dependent pre-asymptotic effects as they appear for standard finite element discretizations of highly oscillatory problems, e.g., the poor L2L^2 approximation in homogenization problems or the pollution effect in high-frequency acoustic scattering

    Adaptive Reconstruction for Electrical Impedance Tomography with a Piecewise Constant Conductivity

    Full text link
    In this work we propose and analyze a numerical method for electrical impedance tomography of recovering a piecewise constant conductivity from boundary voltage measurements. It is based on standard Tikhonov regularization with a Modica-Mortola penalty functional and adaptive mesh refinement using suitable a posteriori error estimators of residual type that involve the state, adjoint and variational inequality in the necessary optimality condition and a separate marking strategy. We prove the convergence of the adaptive algorithm in the following sense: the sequence of discrete solutions contains a subsequence convergent to a solution of the continuous necessary optimality system. Several numerical examples are presented to illustrate the convergence behavior of the algorithm.Comment: 26 pages, 12 figure

    An abstract analysis of optimal goal-oriented adaptivity

    Get PDF
    We provide an abstract framework for optimal goal-oriented adaptivity for finite element methods and boundary element methods in the spirit of (Carstensen, Feischl, Page, and Praetorius, Axioms of adaptivity, Comput. Math. Appl., 67 (2014), pp. 1195–1253). We prove that this framework covers standard discretizations of general second-order linear elliptic PDEs and hence generalizes available results beyond the Poisson equation

    Innovative Approaches to the Numerical Approximation of PDEs

    Get PDF
    This workshop was about the numerical solution of PDEs for which classical approaches, such as the finite element method, are not well suited or need further (theoretical) underpinnings. A prominent example of PDEs for which classical methods are not well suited are PDEs posed in high space dimensions. New results on low rank tensor approximation for those problems were presented. Other presentations dealt with regularity of PDEs, the numerical solution of PDEs on surfaces, PDEs of fractional order, numerical solvers for PDEs that converge with exponential rates, and the application of deep neural networks for solving PDEs
    • …
    corecore