317 research outputs found

    Convergence and optimality of the adaptive nonconforming linear element method for the Stokes problem

    Full text link
    In this paper, we analyze the convergence and optimality of a standard adaptive nonconforming linear element method for the Stokes problem. After establishing a special quasi--orthogonality property for both the velocity and the pressure in this saddle point problem, we introduce a new prolongation operator to carry through the discrete reliability analysis for the error estimator. We then use a specially defined interpolation operator to prove that, up to oscillation, the error can be bounded by the approximation error within a properly defined nonlinear approximate class. Finally, by introducing a new parameter-dependent error estimator, we prove the convergence and optimality estimates

    Instance optimal Crouzeix-Raviart adaptive finite element methods for the Poisson and Stokes problems

    Full text link
    We extend the ideas of Diening, Kreuzer, and Stevenson [Instance optimality of the adaptive maximum strategy, Found. Comput. Math. (2015)], from conforming approximations of the Poisson problem to nonconforming Crouzeix-Raviart approximations of the Poisson and the Stokes problem in 2D. As a consequence, we obtain instance optimality of an AFEM with a modified maximum marking strategy

    Convergence and optimality of the adaptive Morley element method

    Full text link
    This paper is devoted to the convergence and optimality analysis of the adaptive Morley element method for the fourth order elliptic problem. A new technique is developed to establish a quasi-orthogonality which is crucial for the convergence analysis of the adaptive nonconforming method. By introducing a new parameter-dependent error estimator and further establishing a discrete reliability property, sharp convergence and optimality estimates are then fully proved for the fourth order elliptic problem

    Adaptive Nonconforming Finite Element Approximation of Eigenvalue Clusters

    Get PDF
    This paper analyses an adaptive nonconforming finite element method for eigenvalue clusters of self-adjoint operators and proves optimal convergence rates (with respect to the concept of nonlinear approximation classes) for the approximation of the invariant subspace spanned by the eigenfunctions of the eigenvalue cluster. Applications include eigenvalues of the Laplacian and of the Stokes system

    The enriched Crouzeix-Raviart elements are equivalent to the Raviart-Thomas elements

    Full text link
    For both the Poisson model problem and the Stokes problem in any dimension, this paper proves that the enriched Crouzeix-Raviart elements are actually identical to the first order Raviart-Thomas elements in the sense that they produce the same discrete stresses. This result improves the previous result in literature which, for two dimensions, states that the piecewise constant projection of the stress by the first order Raviart-Thomas element is equal to that by the Crouzeix-Raviart element. For the eigenvalue problem of Laplace operator, this paper proves that the error of the enriched Crouzeix-Raviart element is equivalent to that of the Raviart-Thomas element up to higher order terms
    • …
    corecore