15,954 research outputs found

    The max-plus finite element method for solving deterministic optimal control problems: basic properties and convergence analysis

    Get PDF
    We introduce a max-plus analogue of the Petrov-Galerkin finite element method to solve finite horizon deterministic optimal control problems. The method relies on a max-plus variational formulation. We show that the error in the sup norm can be bounded from the difference between the value function and its projections on max-plus and min-plus semimodules, when the max-plus analogue of the stiffness matrix is exactly known. In general, the stiffness matrix must be approximated: this requires approximating the operation of the Lax-Oleinik semigroup on finite elements. We consider two approximations relying on the Hamiltonian. We derive a convergence result, in arbitrary dimension, showing that for a class of problems, the error estimate is of order δ+Δx(δ)−1\delta+\Delta x(\delta)^{-1} or δ+Δx(δ)−1\sqrt{\delta}+\Delta x(\delta)^{-1}, depending on the choice of the approximation, where δ\delta and Δx\Delta x are respectively the time and space discretization steps. We compare our method with another max-plus based discretization method previously introduced by Fleming and McEneaney. We give numerical examples in dimension 1 and 2.Comment: 31 pages, 11 figure

    Bundle-based pruning in the max-plus curse of dimensionality free method

    Full text link
    Recently a new class of techniques termed the max-plus curse of dimensionality-free methods have been developed to solve nonlinear optimal control problems. In these methods the discretization in state space is avoided by using a max-plus basis expansion of the value function. This requires storing only the coefficients of the basis functions used for representation. However, the number of basis functions grows exponentially with respect to the number of time steps of propagation to the time horizon of the control problem. This so called "curse of complexity" can be managed by applying a pruning procedure which selects the subset of basis functions that contribute most to the approximation of the value function. The pruning procedures described thus far in the literature rely on the solution of a sequence of high dimensional optimization problems which can become computationally expensive. In this paper we show that if the max-plus basis functions are linear and the region of interest in state space is convex, the pruning problem can be efficiently solved by the bundle method. This approach combining the bundle method and semidefinite formulations is applied to the quantum gate synthesis problem, in which the state space is the special unitary group (which is non-convex). This is based on the observation that the convexification of the unitary group leads to an exact relaxation. The results are studied and validated via examples

    Multigrid methods for two-player zero-sum stochastic games

    Full text link
    We present a fast numerical algorithm for large scale zero-sum stochastic games with perfect information, which combines policy iteration and algebraic multigrid methods. This algorithm can be applied either to a true finite state space zero-sum two player game or to the discretization of an Isaacs equation. We present numerical tests on discretizations of Isaacs equations or variational inequalities. We also present a full multi-level policy iteration, similar to FMG, which allows to improve substantially the computation time for solving some variational inequalities.Comment: 31 page

    Curse of dimensionality reduction in max-plus based approximation methods: theoretical estimates and improved pruning algorithms

    Full text link
    Max-plus based methods have been recently developed to approximate the value function of possibly high dimensional optimal control problems. A critical step of these methods consists in approximating a function by a supremum of a small number of functions (max-plus "basis functions") taken from a prescribed dictionary. We study several variants of this approximation problem, which we show to be continuous versions of the facility location and kk-center combinatorial optimization problems, in which the connection costs arise from a Bregman distance. We give theoretical error estimates, quantifying the number of basis functions needed to reach a prescribed accuracy. We derive from our approach a refinement of the curse of dimensionality free method introduced previously by McEneaney, with a higher accuracy for a comparable computational cost.Comment: 8pages 5 figure

    The max-plus finite element method for optimal control problems: further approximation results

    Full text link
    We develop the max-plus finite element method to solve finite horizon deterministic optimal control problems. This method, that we introduced in a previous work, relies on a max-plus variational formulation, and exploits the properties of projectors on max-plus semimodules. We prove here a convergence result, in arbitrary dimension, showing that for a subclass of problems, the error estimate is of order δ+Δx(δ)−1\delta+\Delta x(\delta)^{-1}, where δ\delta and Δx\Delta x are the time and space steps respectively. We also show how the max-plus analogues of the mass and stiffness matrices can be computed by convex optimization, even when the global problem is non convex. We illustrate the method by numerical examples in dimension 2.Comment: 13 pages, 2 figure

    A max-plus finite element method for solving finite horizon deterministic optimal control problems

    Get PDF
    We introduce a max-plus analogue of the Petrov-Galerkin finite element method, to solve finite horizon deterministic optimal control problems. The method relies on a max-plus variational formulation, and exploits the properties of projectors on max-plus semimodules. We obtain a nonlinear discretized semigroup, corresponding to a zero-sum two players game. We give an error estimate of order (Δt)1/2+Δx(Δt)−1(\Delta t)^{1/2}+\Delta x(\Delta t)^{-1}, for a subclass of problems in dimension 1. We compare our method with a max-plus based discretization method previously introduced by Fleming and McEneaney.Comment: 13 pages, 5 figure

    Robust Model Predictive Control via Scenario Optimization

    Full text link
    This paper discusses a novel probabilistic approach for the design of robust model predictive control (MPC) laws for discrete-time linear systems affected by parametric uncertainty and additive disturbances. The proposed technique is based on the iterated solution, at each step, of a finite-horizon optimal control problem (FHOCP) that takes into account a suitable number of randomly extracted scenarios of uncertainty and disturbances, followed by a specific command selection rule implemented in a receding horizon fashion. The scenario FHOCP is always convex, also when the uncertain parameters and disturbance belong to non-convex sets, and irrespective of how the model uncertainty influences the system's matrices. Moreover, the computational complexity of the proposed approach does not depend on the uncertainty/disturbance dimensions, and scales quadratically with the control horizon. The main result in this paper is related to the analysis of the closed loop system under receding-horizon implementation of the scenario FHOCP, and essentially states that the devised control law guarantees constraint satisfaction at each step with some a-priori assigned probability p, while the system's state reaches the target set either asymptotically, or in finite time with probability at least p. The proposed method may be a valid alternative when other existing techniques, either deterministic or stochastic, are not directly usable due to excessive conservatism or to numerical intractability caused by lack of convexity of the robust or chance-constrained optimization problem.Comment: This manuscript is a preprint of a paper accepted for publication in the IEEE Transactions on Automatic Control, with DOI: 10.1109/TAC.2012.2203054, and is subject to IEEE copyright. The copy of record will be available at http://ieeexplore.ieee.or

    Tropical Kraus maps for optimal control of switched systems

    Full text link
    Kraus maps (completely positive trace preserving maps) arise classically in quantum information, as they describe the evolution of noncommutative probability measures. We introduce tropical analogues of Kraus maps, obtained by replacing the addition of positive semidefinite matrices by a multivalued supremum with respect to the L\"owner order. We show that non-linear eigenvectors of tropical Kraus maps determine piecewise quadratic approximations of the value functions of switched optimal control problems. This leads to a new approximation method, which we illustrate by two applications: 1) approximating the joint spectral radius, 2) computing approximate solutions of Hamilton-Jacobi PDE arising from a class of switched linear quadratic problems studied previously by McEneaney. We report numerical experiments, indicating a major improvement in terms of scalability by comparison with earlier numerical schemes, owing to the "LMI-free" nature of our method.Comment: 15 page
    • …
    corecore