3,718 research outputs found

    Expanded mixed multiscale finite element methods and their applications for flows in porous media

    Get PDF
    We develop a family of expanded mixed Multiscale Finite Element Methods (MsFEMs) and their hybridizations for second-order elliptic equations. This formulation expands the standard mixed Multiscale Finite Element formulation in the sense that four unknowns (hybrid formulation) are solved simultaneously: pressure, gradient of pressure, velocity and Lagrange multipliers. We use multiscale basis functions for the both velocity and gradient of pressure. In the expanded mixed MsFEM framework, we consider both cases of separable-scale and non-separable spatial scales. We specifically analyze the methods in three categories: periodic separable scales, GG- convergence separable scales, and continuum scales. When there is no scale separation, using some global information can improve accuracy for the expanded mixed MsFEMs. We present rigorous convergence analysis for expanded mixed MsFEMs. The analysis includes both conforming and nonconforming expanded mixed MsFEM. Numerical results are presented for various multiscale models and flows in porous media with shales to illustrate the efficiency of the expanded mixed MsFEMs.Comment: 33 page

    A mixed finite volume scheme for anisotropic diffusion problems on any grid

    Full text link
    We present a new finite volume scheme for anisotropic heterogeneous diffusion problems on unstructured irregular grids, which simultaneously gives an approximation of the solution and of its gradient. In the case of simplicial meshes, the approximate solution is shown to converge to the continuous ones as the size of the mesh tends to 0, and an error estimate is given. In the general case, we propose a slightly modified scheme for which we again prove the convergence, and give an error estimate. An easy implementation method is then proposed, and the efficiency of the scheme is shown on various types of grids

    A study on iterative methods for solving Richards` equation

    Full text link
    This work concerns linearization methods for efficiently solving the Richards` equation,a degenerate elliptic-parabolic equation which models flow in saturated/unsaturated porous media.The discretization of Richards` equation is based on backward Euler in time and Galerkin finite el-ements in space. The most valuable linearization schemes for Richards` equation, i.e. the Newtonmethod, the Picard method, the Picard/Newton method and theLscheme are presented and theirperformance is comparatively studied. The convergence, the computational time and the conditionnumbers for the underlying linear systems are recorded. The convergence of theLscheme is theo-retically proved and the convergence of the other methods is discussed. A new scheme is proposed,theLscheme/Newton method which is more robust and quadratically convergent. The linearizationmethods are tested on illustrative numerical examples

    A linear domain decomposition method for partially saturated flow in porous media

    Get PDF
    The Richards equation is a nonlinear parabolic equation that is commonly used for modelling saturated/unsaturated flow in porous media. We assume that the medium occupies a bounded Lipschitz domain partitioned into two disjoint subdomains separated by a fixed interface Γ\Gamma. This leads to two problems defined on the subdomains which are coupled through conditions expressing flux and pressure continuity at Γ\Gamma. After an Euler implicit discretisation of the resulting nonlinear subproblems a linear iterative (LL-type) domain decomposition scheme is proposed. The convergence of the scheme is proved rigorously. In the last part we present numerical results that are in line with the theoretical finding, in particular the unconditional convergence of the scheme. We further compare the scheme to other approaches not making use of a domain decomposition. Namely, we compare to a Newton and a Picard scheme. We show that the proposed scheme is more stable than the Newton scheme while remaining comparable in computational time, even if no parallelisation is being adopted. Finally we present a parametric study that can be used to optimize the proposed scheme.Comment: 34 pages, 13 figures, 7 table

    A discontinuous Galerkin method for a new class of Green-Naghdi equations on simplicial unstructured meshes

    Get PDF
    In this paper, we introduce a discontinuous Finite Element formulation on simplicial unstructured meshes for the study of free surface flows based on the fully nonlinear and weakly dispersive Green-Naghdi equations. Working with a new class of asymptotically equivalent equations, which have a simplified analytical structure, we consider a decoupling strategy: we approximate the solutions of the classical shallow water equations supplemented with a source term globally accounting for the non-hydrostatic effects and we show that this source term can be computed through the resolution of scalar elliptic second-order sub-problems. The assets of the proposed discrete formulation are: (i) the handling of arbitrary unstructured simplicial meshes, (ii) an arbitrary order of approximation in space, (iii) the exact preservation of the motionless steady states, (iv) the preservation of the water height positivity, (v) a simple way to enhance any numerical code based on the nonlinear shallow water equations. The resulting numerical model is validated through several benchmarks involving nonlinear wave transformations and run-up over complex topographies
    • …
    corecore