7,125 research outputs found

    High-Level Object Oriented Genetic Programming in Logistic Warehouse Optimization

    Get PDF
    Disertační práce je zaměřena na optimalizaci průběhu pracovních operací v logistických skladech a distribučních centrech. Hlavním cílem je optimalizovat procesy plánování, rozvrhování a odbavování. Jelikož jde o problém patřící do třídy složitosti NP-težký, je výpočetně velmi náročné nalézt optimální řešení. Motivací pro řešení této práce je vyplnění pomyslné mezery mezi metodami zkoumanými na vědecké a akademické půdě a metodami používanými v produkčních komerčních prostředích. Jádro optimalizačního algoritmu je založeno na základě genetického programování řízeného bezkontextovou gramatikou. Hlavním přínosem této práce je a) navrhnout nový optimalizační algoritmus, který respektuje následující optimalizační podmínky: celkový čas zpracování, využití zdrojů, a zahlcení skladových uliček, které může nastat během zpracování úkolů, b) analyzovat historická data z provozu skladu a vyvinout sadu testovacích příkladů, které mohou sloužit jako referenční výsledky pro další výzkum, a dále c) pokusit se předčit stanovené referenční výsledky dosažené kvalifikovaným a trénovaným operačním manažerem jednoho z největších skladů ve střední Evropě.This work is focused on the work-flow optimization in logistic warehouses and distribution centers. The main aim is to optimize process planning, scheduling, and dispatching. The problem is quite accented in recent years. The problem is of NP hard class of problems and where is very computationally demanding to find an optimal solution. The main motivation for solving this problem is to fill the gap between the new optimization methods developed by researchers in academic world and the methods used in business world. The core of the optimization algorithm is built on the genetic programming driven by the context-free grammar. The main contribution of the thesis is a) to propose a new optimization algorithm which respects the makespan, the utilization, and the congestions of aisles which may occur, b) to analyze historical operational data from warehouse and to develop the set of benchmarks which could serve as the reference baseline results for further research, and c) to try outperform the baseline results set by the skilled and trained operational manager of the one of the biggest warehouses in the middle Europe.

    An elitist quantum-inspired evolutionary algorithm for the flexible job-shop scheduling problem

    Get PDF
    The flexible job shop scheduling problem (FJSP) is vital to manufacturers especially in today’s constantly changing environment. It is a strongly NP-hard problem and therefore metaheuristics or heuristics are usually pursued to solve it. Most of the existing metaheuristics and heuristics, however, have low efficiency in convergence speed. To overcome this drawback, this paper develops an elitist quantum-inspired evolutionary algorithm. The algorithm aims to minimise the maximum completion time (makespan). It performs a global search with the quantum-inspired evolutionary algorithm and a local search with a method that is inspired by the motion mechanism of the electrons around an atomic nucleus. Three novel algorithms are proposed and their effect on the whole search is discussed. The elitist strategy is adopted to prevent the optimal solution from being destroyed during the evolutionary process. The results show that the proposed algorithm outperforms the best-known algorithms for FJSPs on most of the FJSP benchmarks

    Utilizing Model Knowledge for Design Developed Genetic Algorithm to Solving Problem

    Get PDF
    One of the discussed topics in scheduling problems is Dynamic Flexible Job Shop with Parallel Machines (FDJSPM). Surveys show that this problem because of its concave and nonlinear nature usually has several local optimums. Some of the scheduling problems researchers think that genetic algorithms (GA) are appropriate approach to solve optimization problems of this kind. But researches show that one of the disadvantages of classical genetic algorithms is premature convergence and the probability of trap into the local optimum. Considering these facts, in present research, represented a developed genetic algorithm that its controlling parameters change during algorithm implementation and optimization process. This approach decreases the probability of premature convergence and trap into the local optimum. The several experiments were done show that the priority of proposed procedure of solving in field of the quality of obtained solution and convergence speed toward other present procedure

    INTEGRATED APPROACH OF SCHEDULING A FLEXIBLE JOB SHOP USING ENHANCED FIREFLY AND HYBRID FLOWER POLLINATION ALGORITHMS

    Get PDF
    Manufacturing industries are undergoing tremendous transformation due to Industry 4.0. Flexibility, consumer demands, product customization, high product quality, and reduced delivery times are mandatory for the survival of a manufacturing plant, for which scheduling plays a major role. A job shop problem modified with flexibility is called flexible job shop scheduling. It is an integral part of smart manufacturing. This study aims to optimize scheduling using an integrated approach, where assigning machines and their routing are concurrently performed. Two hybrid methods have been proposed: 1) The Hybrid Adaptive Firefly Algorithm (HAdFA) and 2) Hybrid Flower Pollination Algorithm (HFPA). To address the premature convergence problem inherent in the classic firefly algorithm, the proposed HAdFA employs two novel adaptive strategies: employing an adaptive randomization parameter (α), which dynamically modifies at each step, and Gray relational analysis updates firefly at each step, thereby maintaining a balance between diversification and intensification. HFPA is inspired by the pollination strategy of flowers. Additionally, both HAdFA and HFPA are incorporated with a local search technique of enhanced simulated annealing to accelerate the algorithm and prevent local optima entrapment. Tests on standard benchmark cases have been performed to demonstrate the proposed algorithm’s efficacy. The proposed HAdFA surpasses the performance of the HFPA and other metaheuristics found in the literature. A case study was conducted to further authenticate the efficiency of our algorithm. Our algorithm significantly improves convergence speed and enables the exploration of a large number of rich optimal solutions.

    Hybrid Particle Swarm Algorithm for Job Shop Scheduling Problems

    Get PDF

    Application of an evolutionary algorithm-based ensemble model to job-shop scheduling

    Get PDF
    In this paper, a novel evolutionary algorithm is applied to tackle job-shop scheduling tasks in manufacturing environments. Specifically, a modified micro genetic algorithm (MmGA) is used as the building block to formulate an ensemble model to undertake multi-objective optimisation problems in job-shop scheduling. The MmGA ensemble is able to approximate the optimal solution under the Pareto optimality principle. To evaluate the effectiveness of the MmGA ensemble, a case study based on real requirements is conducted. The results positively indicate the effectiveness of the MmGA ensemble in undertaking job-shop scheduling problems
    corecore