8,250 research outputs found

    Blind adaptive constrained reduced-rank parameter estimation based on constant modulus design for CDMA interference suppression

    Get PDF
    This paper proposes a multistage decomposition for blind adaptive parameter estimation in the Krylov subspace with the code-constrained constant modulus (CCM) design criterion. Based on constrained optimization of the constant modulus cost function and utilizing the Lanczos algorithm and Arnoldi-like iterations, a multistage decomposition is developed for blind parameter estimation. A family of computationally efficient blind adaptive reduced-rank stochastic gradient (SG) and recursive least squares (RLS) type algorithms along with an automatic rank selection procedure are also devised and evaluated against existing methods. An analysis of the convergence properties of the method is carried out and convergence conditions for the reduced-rank adaptive algorithms are established. Simulation results consider the application of the proposed techniques to the suppression of multiaccess and intersymbol interference in DS-CDMA systems

    Degenerate Kalman filter error covariances and their convergence onto the unstable subspace

    Get PDF
    The characteristics of the model dynamics are critical in the performance of (ensemble) Kalman filters. In particular, as emphasized in the seminal work of Anna Trevisan and coauthors, the error covariance matrix is asymptotically supported by the unstable-neutral subspace only, i.e., it is spanned by the backward Lyapunov vectors with nonnegative exponents. This behavior is at the core of algorithms known as assimilation in the unstable subspace, although a formal proof was still missing. This paper provides the analytical proof of the convergence of the Kalman filter covariance matrix onto the unstable-neutral subspace when the dynamics and the observation operator are linear and when the dynamical model is error free, for any, possibly rank-deficient, initial error covariance matrix. The rate of convergence is provided as well. The derivation is based on an expression that explicitly relates the error covariances at an arbitrary time to the initial ones. It is also shown that if the unstable and neutral directions of the model are sufficiently observed and if the column space of the initial covariance matrix has a nonzero projection onto all of the forward Lyapunov vectors associated with the unstable and neutral directions of the dynamics, the covariance matrix of the Kalman filter collapses onto an asymptotic sequence which is independent of the initial covariances. Numerical results are also shown to illustrate and support the theoretical findings

    Adaptive beamforming for large arrays in satellite communications systems with dispersed coverage

    Get PDF
    Conventional multibeam satellite communications systems ensure coverage of wide areas through multiple fixed beams where all users inside a beam share the same bandwidth. We consider a new and more flexible system where each user is assigned his own beam, and the users can be very geographically dispersed. This is achieved through the use of a large direct radiating array (DRA) coupled with adaptive beamforming so as to reject interferences and to provide a maximal gain to the user of interest. New fast-converging adaptive beamforming algorithms are presented, which allow to obtain good signal to interference and noise ratio (SINR) with a number of snapshots much lower than the number of antennas in the array. These beamformers are evaluated on reference scenarios
    • 

    corecore