51,491 research outputs found

    Model Consistency of Partly Smooth Regularizers

    Full text link
    This paper studies least-square regression penalized with partly smooth convex regularizers. This class of functions is very large and versatile allowing to promote solutions conforming to some notion of low-complexity. Indeed, they force solutions of variational problems to belong to a low-dimensional manifold (the so-called model) which is stable under small perturbations of the function. This property is crucial to make the underlying low-complexity model robust to small noise. We show that a generalized "irrepresentable condition" implies stable model selection under small noise perturbations in the observations and the design matrix, when the regularization parameter is tuned proportionally to the noise level. This condition is shown to be almost a necessary condition. We then show that this condition implies model consistency of the regularized estimator. That is, with a probability tending to one as the number of measurements increases, the regularized estimator belongs to the correct low-dimensional model manifold. This work unifies and generalizes several previous ones, where model consistency is known to hold for sparse, group sparse, total variation and low-rank regularizations

    Comparative evaluation of approaches in T.4.1-4.3 and working definition of adaptive module

    Get PDF
    The goal of this deliverable is two-fold: (1) to present and compare different approaches towards learning and encoding movements us- ing dynamical systems that have been developed by the AMARSi partners (in the past during the first 6 months of the project), and (2) to analyze their suitability to be used as adaptive modules, i.e. as building blocks for the complete architecture that will be devel- oped in the project. The document presents a total of eight approaches, in two groups: modules for discrete movements (i.e. with a clear goal where the movement stops) and for rhythmic movements (i.e. which exhibit periodicity). The basic formulation of each approach is presented together with some illustrative simulation results. Key character- istics such as the type of dynamical behavior, learning algorithm, generalization properties, stability analysis are then discussed for each approach. We then make a comparative analysis of the different approaches by comparing these characteristics and discussing their suitability for the AMARSi project

    Joint Cooperative Spectrum Sensing and MAC Protocol Design for Multi-channel Cognitive Radio Networks

    Get PDF
    In this paper, we propose a semi-distributed cooperative spectrum sen sing (SDCSS) and channel access framework for multi-channel cognitive radio networks (CRNs). In particular, we c onsider a SDCSS scheme where secondary users (SUs) perform sensing and exchange sensing outcomes with ea ch other to locate spectrum holes. In addition, we devise the p -persistent CSMA-based cognitive MAC protocol integrating the SDCSS to enable efficient spectrum sharing among SUs. We then perform throughput analysis and develop an algorithm to determine the spectrum sensing and access parameters to maximize the throughput for a given allocation of channel sensing sets. Moreover, we consider the spectrum sensing set optimization problem for SUs to maxim ize the overall system throughput. We present both exhaustive search and low-complexity greedy algorithms to determine the sensing sets for SUs and analyze their complexity. We also show how our design and analysis can be extended to consider reporting errors. Finally, extensive numerical results are presented to demonstrate the sig nificant performance gain of our optimized design framework with respect to non-optimized designs as well as the imp acts of different protocol parameters on the throughput performance.Comment: accepted for publication EURASIP Journal on Wireless Communications and Networking, 201

    Continuous-time Proportional-Integral Distributed Optimization for Networked Systems

    Get PDF
    In this paper we explore the relationship between dual decomposition and the consensus-based method for distributed optimization. The relationship is developed by examining the similarities between the two approaches and their relationship to gradient-based constrained optimization. By formulating each algorithm in continuous-time, it is seen that both approaches use a gradient method for optimization with one using a proportional control term and the other using an integral control term to drive the system to the constraint set. Therefore, a significant contribution of this paper is to combine these methods to develop a continuous-time proportional-integral distributed optimization method. Furthermore, we establish convergence using Lyapunov stability techniques and utilizing properties from the network structure of the multi-agent system.Comment: 23 Pages, submission to Journal of Control and Decision, under review. Takes comments from previous review process into account. Reasons for a continuous approach are given and minor technical details are remedied. Largest revision is reformatting for the Journal of Control and Decisio

    Swarm-Based Spatial Sorting

    Full text link
    Purpose: To present an algorithm for spatially sorting objects into an annular structure. Design/Methodology/Approach: A swarm-based model that requires only stochastic agent behaviour coupled with a pheromone-inspired "attraction-repulsion" mechanism. Findings: The algorithm consistently generates high-quality annular structures, and is particularly powerful in situations where the initial configuration of objects is similar to those observed in nature. Research limitations/implications: Experimental evidence supports previous theoretical arguments about the nature and mechanism of spatial sorting by insects. Practical implications: The algorithm may find applications in distributed robotics. Originality/value: The model offers a powerful minimal algorithmic framework, and also sheds further light on the nature of attraction-repulsion algorithms and underlying natural processes.Comment: Accepted by the Int. J. Intelligent Computing and Cybernetic
    • …
    corecore