16,755 research outputs found

    Convergence Rates for Empirical Estimation of Binary Classification Bounds

    Get PDF
    Bounding the best achievable error probability for binary classification problems is relevant to many applications including machine learning, signal processing, and information theory. Many bounds on the Bayes binary classification error rate depend on information divergences between the pair of class distributions. Recently, the Henze–Penrose (HP) divergence has been proposed for bounding classification error probability. We consider the problem of empirically estimating the HP-divergence from random samples. We derive a bound on the convergence rate for the Friedman–Rafsky (FR) estimator of the HP-divergence, which is related to a multivariate runs statistic for testing between two distributions. The FR estimator is derived from a multicolored Euclidean minimal spanning tree (MST) that spans the merged samples. We obtain a concentration inequality for the Friedman–Rafsky estimator of the Henze–Penrose divergence. We validate our results experimentally and illustrate their application to real datasets

    Estimating labels from label proportions

    Get PDF
    Consider the following problem: given sets of unlabeled observations, each set with known label proportions, predict the labels of another set of observations, also with known label proportions. This problem appears in areas like e-commerce, spam filtering and improper content detection. We present consistent estimators which can reconstruct the correct labels with high probability in a uniform convergence sense. Experiments show that our method works well in practice.

    An adaptive nearest neighbor rule for classification

    Full text link
    We introduce a variant of the kk-nearest neighbor classifier in which kk is chosen adaptively for each query, rather than supplied as a parameter. The choice of kk depends on properties of each neighborhood, and therefore may significantly vary between different points. (For example, the algorithm will use larger kk for predicting the labels of points in noisy regions.) We provide theory and experiments that demonstrate that the algorithm performs comparably to, and sometimes better than, kk-NN with an optimal choice of kk. In particular, we derive bounds on the convergence rates of our classifier that depend on a local quantity we call the `advantage' which is significantly weaker than the Lipschitz conditions used in previous convergence rate proofs. These generalization bounds hinge on a variant of the seminal Uniform Convergence Theorem due to Vapnik and Chervonenkis; this variant concerns conditional probabilities and may be of independent interest

    Classification with the nearest neighbor rule in general finite dimensional spaces: necessary and sufficient conditions

    Get PDF
    Given an nn-sample of random vectors (Xi,Yi)1≤i≤n(X_i,Y_i)_{1 \leq i \leq n} whose joint law is unknown, the long-standing problem of supervised classification aims to \textit{optimally} predict the label YY of a given a new observation XX. In this context, the nearest neighbor rule is a popular flexible and intuitive method in non-parametric situations. Even if this algorithm is commonly used in the machine learning and statistics communities, less is known about its prediction ability in general finite dimensional spaces, especially when the support of the density of the observations is Rd\mathbb{R}^d. This paper is devoted to the study of the statistical properties of the nearest neighbor rule in various situations. In particular, attention is paid to the marginal law of XX, as well as the smoothness and margin properties of the \textit{regression function} η(X)=E[Y∣X]\eta(X) = \mathbb{E}[Y | X]. We identify two necessary and sufficient conditions to obtain uniform consistency rates of classification and to derive sharp estimates in the case of the nearest neighbor rule. Some numerical experiments are proposed at the end of the paper to help illustrate the discussion.Comment: 53 Pages, 3 figure

    Learning gradients on manifolds

    Full text link
    A common belief in high-dimensional data analysis is that data are concentrated on a low-dimensional manifold. This motivates simultaneous dimension reduction and regression on manifolds. We provide an algorithm for learning gradients on manifolds for dimension reduction for high-dimensional data with few observations. We obtain generalization error bounds for the gradient estimates and show that the convergence rate depends on the intrinsic dimension of the manifold and not on the dimension of the ambient space. We illustrate the efficacy of this approach empirically on simulated and real data and compare the method to other dimension reduction procedures.Comment: Published in at http://dx.doi.org/10.3150/09-BEJ206 the Bernoulli (http://isi.cbs.nl/bernoulli/) by the International Statistical Institute/Bernoulli Society (http://isi.cbs.nl/BS/bshome.htm
    • …
    corecore