36,313 research outputs found

    Double Neural Counterfactual Regret Minimization

    Full text link
    Counterfactual Regret Minimization (CRF) is a fundamental and effective technique for solving Imperfect Information Games (IIG). However, the original CRF algorithm only works for discrete state and action spaces, and the resulting strategy is maintained as a tabular representation. Such tabular representation limits the method from being directly applied to large games and continuing to improve from a poor strategy profile. In this paper, we propose a double neural representation for the imperfect information games, where one neural network represents the cumulative regret, and the other represents the average strategy. Furthermore, we adopt the counterfactual regret minimization algorithm to optimize this double neural representation. To make neural learning efficient, we also developed several novel techniques including a robust sampling method, mini-batch Monte Carlo Counterfactual Regret Minimization (MCCFR) and Monte Carlo Counterfactual Regret Minimization Plus (MCCFR+) which may be of independent interests. Experimentally, we demonstrate that the proposed double neural algorithm converges significantly better than the reinforcement learning counterpart

    On the Computation and Communication Complexity of Parallel SGD with Dynamic Batch Sizes for Stochastic Non-Convex Optimization

    Full text link
    For SGD based distributed stochastic optimization, computation complexity, measured by the convergence rate in terms of the number of stochastic gradient calls, and communication complexity, measured by the number of inter-node communication rounds, are two most important performance metrics. The classical data-parallel implementation of SGD over NN workers can achieve linear speedup of its convergence rate but incurs an inter-node communication round at each batch. We study the benefit of using dynamically increasing batch sizes in parallel SGD for stochastic non-convex optimization by charactering the attained convergence rate and the required number of communication rounds. We show that for stochastic non-convex optimization under the P-L condition, the classical data-parallel SGD with exponentially increasing batch sizes can achieve the fastest known O(1/(NT))O(1/(NT)) convergence with linear speedup using only log(T)\log(T) communication rounds. For general stochastic non-convex optimization, we propose a Catalyst-like algorithm to achieve the fastest known O(1/NT)O(1/\sqrt{NT}) convergence with only O(NTlog(TN))O(\sqrt{NT}\log(\frac{T}{N})) communication rounds.Comment: A short version is accepted to ICML 201

    The Global Convergence of the Alternating Minimization Algorithm for Deep Neural Network Problems

    Full text link
    In recent years, stochastic gradient descent (SGD) and its variants have been the dominant optimization methods for training deep neural networks. However, SGD suffers from limitations such as the lack of theoretical guarantees, vanishing gradients, excessive sensitivity to input, and difficulties solving highly non-smooth constraints and functions. To overcome these drawbacks, alternating minimization-based methods for deep neural network optimization have attracted fast-increasing attention recently. As an emerging and open domain, however, several new challenges need to be addressed, including: 1) there is no guarantee of global convergence under mild, practical conditions, and 2) cubic time complexity in the size of feature dimensions. We therefore propose a novel Deep Learning Alternating Minimization (DLAM) algorithm to deal with these two challenges. Our innovative inequality-constrained formulation infinitely approximates the original problem with non-convex equality constraints, enabling our proof of global convergence of the DLAM algorithm under mild, practical conditions. The time complexity is successfully reduced from O(d3)O(d^3) to O(d2)O(d^2) via a dedicated algorithm design for subproblems that is enhanced by iterative quadratic approximations and backtracking. Experiments on benchmark datasets demonstrate the effectiveness of our proposed DLAM algorithm

    Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates

    Full text link
    Recent works have shown that stochastic gradient descent (SGD) achieves the fast convergence rates of full-batch gradient descent for over-parameterized models satisfying certain interpolation conditions. However, the step-size used in these works depends on unknown quantities and SGD's practical performance heavily relies on the choice of this step-size. We propose to use line-search techniques to automatically set the step-size when training models that can interpolate the data. In the interpolation setting, we prove that SGD with a stochastic variant of the classic Armijo line-search attains the deterministic convergence rates for both convex and strongly-convex functions. Under additional assumptions, SGD with Armijo line-search is shown to achieve fast convergence for non-convex functions. Furthermore, we show that stochastic extra-gradient with a Lipschitz line-search attains linear convergence for an important class of non-convex functions and saddle-point problems satisfying interpolation. To improve the proposed methods' practical performance, we give heuristics to use larger step-sizes and acceleration. We compare the proposed algorithms against numerous optimization methods on standard classification tasks using both kernel methods and deep networks. The proposed methods result in competitive performance across all models and datasets, while being robust to the precise choices of hyper-parameters. For multi-class classification using deep networks, SGD with Armijo line-search results in both faster convergence and better generalization.Comment: Added a citation to the related work of Paul Tseng, and citations to methods that had previously explored line-searches for deep learning empiricall

    Fast learning rate of deep learning via a kernel perspective

    Full text link
    We develop a new theoretical framework to analyze the generalization error of deep learning, and derive a new fast learning rate for two representative algorithms: empirical risk minimization and Bayesian deep learning. The series of theoretical analyses of deep learning has revealed its high expressive power and universal approximation capability. Although these analyses are highly nonparametric, existing generalization error analyses have been developed mainly in a fixed dimensional parametric model. To compensate this gap, we develop an infinite dimensional model that is based on an integral form as performed in the analysis of the universal approximation capability. This allows us to define a reproducing kernel Hilbert space corresponding to each layer. Our point of view is to deal with the ordinary finite dimensional deep neural network as a finite approximation of the infinite dimensional one. The approximation error is evaluated by the degree of freedom of the reproducing kernel Hilbert space in each layer. To estimate a good finite dimensional model, we consider both of empirical risk minimization and Bayesian deep learning. We derive its generalization error bound and it is shown that there appears bias-variance trade-off in terms of the number of parameters of the finite dimensional approximation. We show that the optimal width of the internal layers can be determined through the degree of freedom and the convergence rate can be faster than O(1/n)O(1/\sqrt{n}) rate which has been shown in the existing studies.Comment: 36 page

    A Unified Framework for Training Neural Networks

    Full text link
    The lack of mathematical tractability of Deep Neural Networks (DNNs) has hindered progress towards having a unified convergence analysis of training algorithms, in the general setting. We propose a unified optimization framework for training different types of DNNs, and establish its convergence for arbitrary loss, activation, and regularization functions, assumed to be smooth. We show that framework generalizes well-known first- and second-order training methods, and thus allows us to show the convergence of these methods for various DNN architectures and learning tasks, as a special case of our approach. We discuss some of its applications in training various DNN architectures (e.g., feed-forward, convolutional, linear networks), to regression and classification tasks.Comment: 15 pages, submitted to NIPS 201

    When Does Stochastic Gradient Algorithm Work Well?

    Full text link
    In this paper, we consider a general stochastic optimization problem which is often at the core of supervised learning, such as deep learning and linear classification. We consider a standard stochastic gradient descent (SGD) method with a fixed, large step size and propose a novel assumption on the objective function, under which this method has the improved convergence rates (to a neighborhood of the optimal solutions). We then empirically demonstrate that these assumptions hold for logistic regression and standard deep neural networks on classical data sets. Thus our analysis helps to explain when efficient behavior can be expected from the SGD method in training classification models and deep neural networks

    Deep Frank-Wolfe For Neural Network Optimization

    Full text link
    Learning a deep neural network requires solving a challenging optimization problem: it is a high-dimensional, non-convex and non-smooth minimization problem with a large number of terms. The current practice in neural network optimization is to rely on the stochastic gradient descent (SGD) algorithm or its adaptive variants. However, SGD requires a hand-designed schedule for the learning rate. In addition, its adaptive variants tend to produce solutions that generalize less well on unseen data than SGD with a hand-designed schedule. We present an optimization method that offers empirically the best of both worlds: our algorithm yields good generalization performance while requiring only one hyper-parameter. Our approach is based on a composite proximal framework, which exploits the compositional nature of deep neural networks and can leverage powerful convex optimization algorithms by design. Specifically, we employ the Frank-Wolfe (FW) algorithm for SVM, which computes an optimal step-size in closed-form at each time-step. We further show that the descent direction is given by a simple backward pass in the network, yielding the same computational cost per iteration as SGD. We present experiments on the CIFAR and SNLI data sets, where we demonstrate the significant superiority of our method over Adam, Adagrad, as well as the recently proposed BPGrad and AMSGrad. Furthermore, we compare our algorithm to SGD with a hand-designed learning rate schedule, and show that it provides similar generalization while converging faster. The code is publicly available at https://github.com/oval-group/dfw.Comment: Published as a conference paper at ICLR 201

    Functional Gradient Boosting based on Residual Network Perception

    Full text link
    Residual Networks (ResNets) have become state-of-the-art models in deep learning and several theoretical studies have been devoted to understanding why ResNet works so well. One attractive viewpoint on ResNet is that it is optimizing the risk in a functional space by combining an ensemble of effective features. In this paper, we adopt this viewpoint to construct a new gradient boosting method, which is known to be very powerful in data analysis. To do so, we formalize the gradient boosting perspective of ResNet mathematically using the notion of functional gradients and propose a new method called ResFGB for classification tasks by leveraging ResNet perception. Two types of generalization guarantees are provided from the optimization perspective: one is the margin bound and the other is the expected risk bound by the sample-splitting technique. Experimental results show superior performance of the proposed method over state-of-the-art methods such as LightGBM.Comment: 22 pages, 1 figure, 1 table. An extended version of ICML 2018 pape

    A Dual-Dimer Method for Training Physics-Constrained Neural Networks with Minimax Architecture

    Full text link
    Data sparsity is a common issue to train machine learning tools such as neural networks for engineering and scientific applications, where experiments and simulations are expensive. Recently physics-constrained neural networks (PCNNs) were developed to reduce the required amount of training data. However, the weights of different losses from data and physical constraints are adjusted empirically in PCNNs. In this paper, a new physics-constrained neural network with the minimax architecture (PCNN-MM) is proposed so that the weights of different losses can be adjusted systematically. The training of the PCNN-MM is searching the high-order saddle points of the objective function. A novel saddle point search algorithm called Dual-Dimer method is developed. It is demonstrated that the Dual-Dimer method is computationally more efficient than the gradient descent ascent method for nonconvex-nonconcave functions and provides additional eigenvalue information to verify search results. A heat transfer example also shows that the convergence of PCNN-MMs is faster than that of traditional PCNNs.Comment: 34 pages, 5 figures, accepted by neural network
    corecore