3,571 research outputs found

    On the fourth-order accurate compact ADI scheme for solving the unsteady Nonlinear Coupled Burgers' Equations

    Full text link
    The two-dimensional unsteady coupled Burgers' equations with moderate to severe gradients, are solved numerically using higher-order accurate finite difference schemes; namely the fourth-order accurate compact ADI scheme, and the fourth-order accurate Du Fort Frankel scheme. The question of numerical stability and convergence are presented. Comparisons are made between the present schemes in terms of accuracy and computational efficiency for solving problems with severe internal and boundary gradients. The present study shows that the fourth-order compact ADI scheme is stable and efficient

    HIGH ACCURACY MULTISCALE MULTIGRID COMPUTATION FOR PARTIAL DIFFERENTIAL EQUATIONS

    Get PDF
    Scientific computing and computer simulation play an increasingly important role in scientific investigation and engineering designs, supplementing traditional experiments, such as in automotive crash studies, global climate change, ocean modeling, medical imaging, and nuclear weapons. The numerical simulation is much cheaper than experimentation for these application areas and it can be used as the third way of science discovery beyond the experimental and theoretical analysis. However, the increasing demand of high resolution solutions of the Partial Differential Equations (PDEs) with less computational time has increased the importance for researchers and engineers to come up with efficient and scalable computational techniques that can solve very large-scale problems. In this dissertation, we build an efficient and highly accurate computational framework to solve PDEs using high order discretization schemes and multiscale multigrid method. Since there is no existing explicit sixth order compact finite difference schemes on a single scale grids, we used Gupta and Zhang’s fourth order compact (FOC) schemes on different scale grids combined with Richardson extrapolation schemes to compute the sixth order solutions on coarse grid. Then we developed an operator based interpolation scheme to approximate the sixth order solutions for every find grid point. We tested our method for 1D/2D/3D Poisson and convection-diffusion equations. We developed a multiscale multigrid method to efficiently solve the linear systems arising from FOC discretizations. It is similar to the full multigrid method, but it does not start from the coarsest level. The major advantage of the multiscale multigrid method is that it has an optimal computational cost similar to that of a full multigrid method and can bring us the converged fourth order solutions on two grids with different scales. In order to keep grid independent convergence for the multiscale multigrid method, line relaxation and plane relaxation are used for 2D and 3D convection diffusion equations with high Reynolds number, respectively. In addition, the residual scaling technique is also applied for high Reynolds number problems. To further optimize the multiscale computation procedure, we developed two new methods. The first method is developed to solve the FOC solutions on two grids using standardW-cycle structure. The novelty of this strategy is that we use the coarse level grid that will be generated in the standard geometric multigrid to solve the discretized equations and achieve higher order accuracy solution. It is more efficient and costs less CPU and memory compared with the V-cycle based multiscale multigrid method. The second method is called the multiple coarse grid computation. It is first proposed in superconvergent multigrid method to speed up the convergence. The basic idea of multigrid superconvergent method is to use multiple coarse grids to generate better correction for the fine grid solution than that from the single coarse grid. However, as far as we know, it has never been used to increase the order of solution accuracy for the fine grid. In this dissertation, we use the idea of multiple coarse grid computation to approximate the fourth order solutions on every coarse grid and fine grid. Then we apply the Richardson extrapolation for every fine grid point to get the sixth order solutions. For parallel implementation, we studied the parallelization and vectorization potential of the Gauss-Seidel relaxation by partitioning the grid space with four colors for solving 3D convection-diffusion equations. We used OpenMP to parallelize the loops in relaxation and residual computation. The numerical results show that the parallelized and the sequential implementation have the same convergence rate and the accuracy of the computed solutions

    Coupled/combined compact IRBF schemes for fluid flow and FSI problems

    Get PDF
    The thesis is concerned with the development of compact approximation methods based on Integrated Radial Basis Functions (IRBFs) and their applications in fluid flows and FSI problems. The contributions include (i) new compact IRBF stencils where first- and second-order derivatives are included; (ii) a preconditioning technique where a preconditioner to enhance the stability of the flat IRBF solutions; and, (iii) the incorporation of the proposed stencils into the immersed boundary methods. Numerical experiments show the present schemes generally produce more accurate solutions and better convergence rates than existing methods (e.g. FDM, high-order compact FDM and compact IRBF methods)

    Airfilm cooling through laser drilled holes

    Get PDF
    One of the major problems in enhancing the specific work output and efficiency in gas turbines is the maximum possible value of the turbine inlet temperature due to blade material properties. To increase this maximum, turbine blades need to be cooled (internal or external), which is usually done by compressor air. Based on its high cooling efficiency, film cooling is one of the major cooling techniques used, especially for the hottest blades. In film cooling cold air is injected into the boundary layer through small nozzles in the blade surface. Impingement of the jets into the (laminar) boundary layer flow is essentially three-dimensional. The collision of the laminar jet with the boundary layer flow produces a local turbulent shear layer and changes the local heat transfer to the blade (when poorly constructed it may even increase the local heat transfer). In this project we have studied local grid refinement methods and their application to flow problems in general and to air film cooling in particular. Local defect correction (LDC) is an iterative method for solving pure boundary value or initial-boundary value problems on composite grids. It is based on using simple data structures and simple discretization stencils on uniform or tensor-product grids. Fast solution techniques exist for solving the system of equations resulting from discretization on a structured grid. We have combined the standard LDC method with high order finite differences by using a new strategy of defect calculation. Numerical results prove high accuracy and fast convergence of the proposed method. We made a review of boundary conditions for compressible flows. Since we would like to use local grid refinement for such flow problems, we studied the spreading of an acoustic pulse. For this model problem we introduced local grid refinement and made a series of tests in order to see if the artificial boundary conditions introduced for the local fine grid cause any reflections of the acoustic waves. The numerical techniques developed have been used to study film cooling. Because this problem concerns the interaction between a main flow and a jet, we also propose a domain decomposition algorithm in order to supply proper boundary conditions for the cooling jet. This domain decomposition combines a structured DNS flow solver for the problem of interest with an unstructured solver for the flow in the cooling nozzle. Additionally we implemented local grid refinement for the flow problem to save computational costs

    ULTRA-SHARP nonoscillatory convection schemes for high-speed steady multidimensional flow

    Get PDF
    For convection-dominated flows, classical second-order methods are notoriously oscillatory and often unstable. For this reason, many computational fluid dynamicists have adopted various forms of (inherently stable) first-order upwinding over the past few decades. Although it is now well known that first-order convection schemes suffer from serious inaccuracies attributable to artificial viscosity or numerical diffusion under high convection conditions, these methods continue to enjoy widespread popularity for numerical heat transfer calculations, apparently due to a perceived lack of viable high accuracy alternatives. But alternatives are available. For example, nonoscillatory methods used in gasdynamics, including currently popular TVD schemes, can be easily adapted to multidimensional incompressible flow and convective transport. This, in itself, would be a major advance for numerical convective heat transfer, for example. But, as is shown, second-order TVD schemes form only a small, overly restrictive, subclass of a much more universal, and extremely simple, nonoscillatory flux-limiting strategy which can be applied to convection schemes of arbitrarily high order accuracy, while requiring only a simple tridiagonal ADI line-solver, as used in the majority of general purpose iterative codes for incompressible flow and numerical heat transfer. The new universal limiter and associated solution procedures form the so-called ULTRA-SHARP alternative for high resolution nonoscillatory multidimensional steady state high speed convective modelling

    Numerical Simulation of Complex, Three-Dimensional, Turbulent-Free Jets

    Get PDF
    Three-dimensional, incompressible turbulent jets with rectangular and elliptical cross-section are simulated with a finite-difference numerical method. The full Navier-Stokes equations are solved at low Reynoids numbers, whereas at high Reynolds numbers filtered forms of the equations are solved along with a sub-grid scale model to approximate the effects of the unresolved scales. A 2-N storage, third-order Runge-Kutta scheme is used for temporal discretization and a fourth-order compact scheme is used for spatial discretization. Although such methods are widely used in the simulation of compressible flows, the lack of an evolution equation for pressure or density presents particular difficulty in incompressible flows. The pressure-velocity coupling must be established indirectly. It is achieved, in this study, through a Poisson equation which is solved by a compact scheme of the same order of accuracy. The numerical formulation is validated and the dispersion and dissipation errors are documented by the solution of a wide range of benchmark problems. Three-dimensional computations are performed for different inlet conditions which model the naturally developing and forced jet. The experimentally observed phenomenon of axis-switching is captured in the numerical simulation, and it is confirmed through flow visualization that this is based on self-induction of the vorticity field. Statistical quantities such as mean velocity, mean pressure, two-point velocity spatial correlations and Reynolds stresses are presented. Detailed budgets of the mean momentum and Reynolds stress equations are presented to aid in the turbulence modeling of complex jets. Simulations of circular jets are used to quantify the effect of the non-uniform curvature of the non-circular jets
    corecore