1,249 research outputs found

    AI-based design methodologies for hot form quench (HFQ®)

    Get PDF
    This thesis aims to develop advanced design methodologies that fully exploit the capabilities of the Hot Form Quench (HFQ®) stamping process in stamping complex geometric features in high-strength aluminium alloy structural components. While previous research has focused on material models for FE simulations, these simulations are not suitable for early-phase design due to their high computational cost and expertise requirements. This project has two main objectives: first, to develop design guidelines for the early-stage design phase; and second, to create a machine learning-based platform that can optimise 3D geometries under hot stamping constraints, for both early and late-stage design. With these methodologies, the aim is to facilitate the incorporation of HFQ capabilities into component geometry design, enabling the full realisation of its benefits. To achieve the objectives of this project, two main efforts were undertaken. Firstly, the analysis of aluminium alloys for stamping deep corners was simplified by identifying the effects of corner geometry and material characteristics on post-form thinning distribution. New equation sets were proposed to model trends and design maps were created to guide component design at early stages. Secondly, a platform was developed to optimise 3D geometries for stamping, using deep learning technologies to incorporate manufacturing capabilities. This platform combined two neural networks: a geometry generator based on Signed Distance Functions (SDFs), and an image-based manufacturability surrogate model. The platform used gradient-based techniques to update the inputs to the geometry generator based on the surrogate model's manufacturability information. The effectiveness of the platform was demonstrated on two geometry classes, Corners and Bulkheads, with five case studies conducted to optimise under post-stamped thinning constraints. Results showed that the platform allowed for free morphing of complex geometries, leading to significant improvements in component quality. The research outcomes represent a significant contribution to the field of technologically advanced manufacturing methods and offer promising avenues for future research. The developed methodologies provide practical solutions for designers to identify optimal component geometries, ensuring manufacturing feasibility and reducing design development time and costs. The potential applications of these methodologies extend to real-world industrial settings and can significantly contribute to the continued advancement of the manufacturing sector.Open Acces

    Interaction of elastomechanics and fluid dynamics in the human heart : Opportunities and challenges of light coupling strategies

    Get PDF
    Das menschliche Herz ist das hochkomplexe Herzstück des kardiovaskulären Systems, das permanent, zuverlässig und autonom den Blutfluss im Körper aufrechterhält. In Computermodellen wird die Funktionalität des Herzens nachgebildet, um Simulationsstudien durchzuführen, die tiefere Einblicke in die zugrundeliegenden Phänomene ermöglichen oder die Möglichkeit bieten, relevante Parameter unter vollständig kontrollierten Bedingungen zu variieren. Angesichts der Tatsache, dass Herz-Kreislauf-Erkrankungen die häufigste Todesursache in den Ländern der westlichen Hemisphäre sind, ist ein Beitrag zur frühzeit- igen Diagnose derselben von großer klinischer Bedeutung. In diesem Zusammenhang können computergestützte Strömungssimulationen wertvolle Einblicke in die Blutflussdynamik liefern und bieten somit die Möglichkeit, einen zentralen Bereich der Physik dieses multiphysikalischen Organs zu untersuchen. Da die Verformung der Endokardoberfläche den Blutfluss antreibt, müssen die Effekte der Elastomechanik als Randbedingungen für solche Strömungssimulationen berücksichtigt werden. Um im klinischen Kontext relevant zu sein, muss jedoch ein Mittelweg zwischen dem Rechenaufwand und der erforderlichen Genauigkeit gefunden werden, und die Modelle müssen sowohl robust als auch zuverlässig sein. Daher werden in dieser Arbeit die Möglichkeiten und Herausforderungen leichter und daher weniger komplexer Kopplungsstrategien mit Schwerpunkt auf drei Schlüsselaspekten bewertet: Erstens wird ein auf dem Immersed Boundary-Ansatz basierender Fluiddynamik-Löser implementiert, da diese Methode mit einer sehr robusten Darstellung von bewegten Netzen besticht. Die grundlegende Funktionalität wurde für verschiedene vereinfachte Geometrien verifiziert und zeigte eine hohe Übereinstimmung mit der jeweiligen analytischen Lösung. Vergleicht man die 3D-Simulation einer realistischen Geometrie des linken Teils des Herzens mit einem körperangepassten Netzbeschreibung, so wurden grundlegende globale Größen korrekt reproduziert. Allerdings zeigten Variationen der Randbedingungen einen großen Einfluss auf die Simulationsergebnisse. Die Anwendung des Lösers zur Simulation des Einflusses von Pathologien auf die Blutströmungsmuster ergab Ergebnisse in guter Übereinstimmung mit Literaturwerten. Bei Simulationen der Mitralklappeninsuffizienz wurde der rückströmende Anteil mit Hilfe einer Partikelverfolgungsmethode visualisiert. Bei hypertropher Kardiomyopathie wurden die Strömungsmuster im linken Ventrikel mit Hilfe eines passiven Skalartransports bewertet, um die lokale Konzentration des ursprünglichen Blutvolumens zu visualisieren. Da in den vorgenannten Studien nur ein unidirektionaler Informationsfluss vom elas- tomechanischen Modell zum Strömungslöser berücksichtigt wurde, wird die Rückwirkung des räumlich aufgelösten Druckfeldes aus den Strömungssimulationen auf die Elastomechanik quantifiziert. Es wird ein sequenzieller Kopplungsansatz eingeführt, um fluiddynamische Einflüsse in einer Schlag-für-Schlag-Kopplungsstruktur zu berücksichtigen. Die geringen Abweichungen im mechanischen Solver von 2 mm verschwanden bereits nach einer Iteration, was darauf schließen lässt, dass die Rückwirkungen der Fluiddynamik im gesunden Herzen begrenzt ist. Zusammenfassend lässt sich sagen, dass insbesondere bei Strömungsdynamiksimula- tionen die Randbedingungen mit Vorsicht gewählt werden müssen, da sie aufgrund ihres großen Einflusses die Anfälligkeit der Modelle erhöhen. Nichtsdestotrotz zeigten verein- fachte Kopplungsstrategien vielversprechende Ergebnisse bei der Reproduktion globaler fluiddynamischer Größen, während die Abhängigkeit zwischen den Lösern reduziert und Rechenaufwand eingespart wird

    Novel neural architectures & algorithms for efficient inference

    Get PDF
    In the last decade, the machine learning universe embraced deep neural networks (DNNs) wholeheartedly with the advent of neural architectures such as recurrent neural networks (RNNs), convolutional neural networks (CNNs), transformers, etc. These models have empowered many applications, such as ChatGPT, Imagen, etc., and have achieved state-of-the-art (SOTA) performance on many vision, speech, and language modeling tasks. However, SOTA performance comes with various issues, such as large model size, compute-intensive training, increased inference latency, higher working memory, etc. This thesis aims at improving the resource efficiency of neural architectures, i.e., significantly reducing the computational, storage, and energy consumption of a DNN without any significant loss in performance. Towards this goal, we explore novel neural architectures as well as training algorithms that allow low-capacity models to achieve near SOTA performance. We divide this thesis into two dimensions: \textit{Efficient Low Complexity Models}, and \textit{Input Hardness Adaptive Models}. Along the first dimension, i.e., \textit{Efficient Low Complexity Models}, we improve DNN performance by addressing instabilities in the existing architectures and training methods. We propose novel neural architectures inspired by ordinary differential equations (ODEs) to reinforce input signals and attend to salient feature regions. In addition, we show that carefully designed training schemes improve the performance of existing neural networks. We divide this exploration into two parts: \textsc{(a) Efficient Low Complexity RNNs.} We improve RNN resource efficiency by addressing poor gradients, noise amplifications, and BPTT training issues. First, we improve RNNs by solving ODEs that eliminate vanishing and exploding gradients during the training. To do so, we present Incremental Recurrent Neural Networks (iRNNs) that keep track of increments in the equilibrium surface. Next, we propose Time Adaptive RNNs that mitigate the noise propagation issue in RNNs by modulating the time constants in the ODE-based transition function. We empirically demonstrate the superiority of ODE-based neural architectures over existing RNNs. Finally, we propose Forward Propagation Through Time (FPTT) algorithm for training RNNs. We show that FPTT yields significant gains compared to the more conventional Backward Propagation Through Time (BPTT) scheme. \textsc{(b) Efficient Low Complexity CNNs.} Next, we improve CNN architectures by reducing their resource usage. They require greater depth to generate high-level features, resulting in computationally expensive models. We design a novel residual block, the Global layer, that constrains the input and output features by approximately solving partial differential equations (PDEs). It yields better receptive fields than traditional convolutional blocks and thus results in shallower networks. Further, we reduce the model footprint by enforcing a novel inductive bias that formulates the output of a residual block as a spatial interpolation between high-compute anchor pixels and low-compute cheaper pixels. This results in spatially interpolated convolutional blocks (SI-CNNs) that have better compute and performance trade-offs. Finally, we propose an algorithm that enforces various distributional constraints during training in order to achieve better generalization. We refer to this scheme as distributionally constrained learning (DCL). In the second dimension, i.e., \textit{Input Hardness Adaptive Models}, we introduce the notion of the hardness of any input relative to any architecture. In the first dimension, a neural network allocates the same resources, such as compute, storage, and working memory, for all the inputs. It inherently assumes that all examples are equally hard for a model. In this dimension, we challenge this assumption using input hardness as our reasoning that some inputs are relatively easy for a network to predict compared to others. Input hardness enables us to create selective classifiers wherein a low-capacity network handles simple inputs while abstaining from a prediction on the complex inputs. Next, we create hybrid models that route the hard inputs from the low-capacity abstaining network to a high-capacity expert model. We design various architectures that adhere to this hybrid inference style. Further, input hardness enables us to selectively distill the knowledge of a high-capacity model into a low-capacity model by cleverly discarding hard inputs during the distillation procedure. Finally, we conclude this thesis by sketching out various interesting future research directions that emerge as an extension of different ideas explored in this work

    Caractérisation minéralogique quantitative automatisée en microscopie optique et applications à l’étude de minerais dans le cadre d’une approche géométallurgique.

    Get PDF
    La caractérisation minéralogique est essentielle pour la caractérisation des différents produits d’un gisement (lithologie, minerai, stérile, résidu, etc.). Elle peut procurer énormément d’informations pertinentes pour les différents aspects de la mine (exploration, traitement minéral, gestion environnementale des rejets miniers). Cependant, la caractérisation minéralogique souffre aujourd’hui d’une réputation à la fois longue, fastidieuse et couteuse de la part de l’industrie minière. Cette industrie s’est ainsi vue progressivement abandonner l’approche minéralogique pour la caractérisation de leurs gisements. Avec les nouveaux défis technico-économiques apparaissant au sein des gisements (teneurs de plus en plus faibles, extraction de plus en plus profonde, gestion intégrée des rejets miniers et valorisation de nouveaux types de gisement), une nouvelle approche géométallurgique s’est alors développée dans l’industrie. Cette nouvelle vision de la mine consiste à intégrer les variabilités, notamment minéralogiques, des gisements afin de l’intégrer le plus en amont possible dans le développement du projet minier. Le but est de quitter l’approche en silo qu’effectue l’industrie pour permettre plus de communication entre les différents départements d’une mine (exploration, ingénierie, production, environnement) et ainsi permettre une optimisation technico-économique de l’exploitation tout en réduisant les risques techniques et opérationnels. Il s’avère que la caractérisation minéralogique est redevenue une caractérisation indispensable pour cette nouvelle vision géométallurgique de la mine, notamment parce qu’elle peut constituer un langage commun entre les différents départements de la mine. La caractérisation minéralogique permet effectivement de fournir des quantifications de paramètres, notamment de texture (comprenant la granulo-minéralogie, degré de libération/d’exposition et association), sur les différents produits de la mine qui constituent très souvent les variables critiques régissant la modélisation géométallurgique d’un gisement. La géométallurgie met ainsi en avant la pertinence des outils de caractérisations minéralogiques automatisées de type microscope électronique à balayage associé à la spectroscopie en énergie dispersive (MEB-EDS), comme le système QEMSCAN®. Cependant, ces outils, bien que récemment démocratisés, restent encore très dispendieux et contraignants pour l’industrie minière. De plus, ils nécessitent une expertise poussée pour leur utilisation au quotidien au sein de la mine. Par conséquent, la caractérisation minéralogique automatisée reste encore relativement anecdotique au sein des différentes opérations de développement d’une exploitation minière, alors qu’elle reste très souvent indispensable pour l’approche géométallurgique de la mine. Le microscope optique automatisée (MOA) représente quant à lui un outil alternatif plus accessible financièrement que les systèmes types MEB-EDS et permet une caractérisation des minéraux opaques très souvent valorisables (sulfures, oxydes, éléments natifs, alliages) moins contraignante, nécessitant une expertise moins poussée que son homologue électronique. C’est dans ce contexte que les travaux de cette présente thèse se sont développés. L’objectif général a ainsi été de développer et d’améliorer des approches et techniques de caractérisation minéralogique abordables, fiables et précises via l’outil de MOA. Le but était de proposer une caractérisation minéralogique automatisée plus accessible pour l’industrie minière, selon une approche géométallurgique. Cette présente thèse s’est ainsi construite autour de trois axes de recherche : le développement de protocoles de préparations de section polie représentatifs, l’amélioration de techniques d’imagerie optique sous MOA et l’étude comparative et cas d’applications en contexte géométallurgique de l’outil afin de prouver sa fiabilité et sa pertinence. Une nouvelle méthode d’échantillonnage a ainsi été développée afin de décider du nombre approprié de sections polies qui doivent être préparées en fonction de la classe granulométrique considérée. Le but est d’obtenir une représentativité suffisante pour les analyses de minéralogie automatisée. Pour illustrer cette méthode, deux protocoles d'échantillonnage (sous forme de grain à des fins de caractérisation texturales et sous forme de poudre) d'un minerai sulfuré typique théorique, incluant une préparation granulométrique (sizing), sont présentés. Une nouvelle méthode de calcul de la variance de l'erreur fondamentale liée à l'échantillonnage a ainsi été proposée. Ces protocoles d'échantillonnage sont une adaptation de la ligne de sécurité dérivée de la théorie d'échantillonnage de Pierre Gy et sont à ajuster en fonction de la connaissance des propriétés intrinsèques du matériau considéré. La méthode peut être très utile pour mieux anticiper le manque de représentativité des données minéralogiques fournies par les outils de minéralogie automatisé liées à la préparation d’échantillonnage. Au cours de ces travaux de doctorat, une nouvelle résine a été aussi découverte pour la préparation de section polie : la résine acrylique. Cette nouvelle résine a été comparée aux autres résines communément utilisées pour la préparation de section polie : la résine époxy et la résine dite carbon black (assimilé à la résine époxy mélangé avec du graphite). Cette comparaison a compris des mesures rhéologiques ainsi que des analyses par MOA. L’objectif a été de vérifier si une composition minéralogique fiable et sans biais est possible sous MOA avec cette nouvelle résine, attestant que les particules minérales n’ont pas subi une ségrégation préférentielle au sein de la section polie. Pour ce faire, des mélanges de poudres minérales standard ont été préparées en utilisant différents minéraux opaques purs à une fraction granulométrique calibrée entre 25 et 75 μm. Les résultats indiquent que le comportement rhéologique de la résine acrylique à durcissement rapide permet d'obtenir une composition minérale précise tout en évitant toute sédimentation préférentielle des particules par rapport aux autres résines étudiées. La caractérisation minéralogique automatisée nécessite d’obtenir des résultats de quantification non biaisés. Cependant, le MOA ne permet pas de détecter les minéraux transparents (ou de gangue) lors d'une analyse par microscopie optique en lumière réfléchie, car les réflectances de la résine et des minéraux de gangue sont très proches. De nouveaux travaux se sont alors concentrés à proposer une nouvelle méthode innovante pour détecter automatiquement toutes les particules minérales (y compris les particules transparentes) sur une section polie en résine acrylique par imagerie optique réfléchie en utilisant un algorithme d'apprentissage profond (deep learning). Pour ce faire, plusieurs poudres de minerai et de mélanges de standards de minéraux ont été montées en sections polies avec résine acrylique à deux tailles de particules différentes : < 1mm et P80~75 μm. Un maximum d'images optiques a été acquis avec un MOA sur ces sections polies pour entraîner et tester l'algorithme d'apprentissage profond à détecter les particules minérales. Les résultats montrent que l'algorithme d'apprentissage profond détecte facilement toutes les particules minérales dans le motif bullé caractéristique de la matrice de la résine acrylique, ce qui permet de bien différencier les minéraux de gangue sous microscopie optique réfléchie pour la détermination de la composition modale fiable des échantillons étudiés. De plus, les travaux ont pu permettre le développement de l’imagerie hyperspectrale optique afin de permettre une identification minéralogique plus efficace en MOA comparé à ce que proposent les systèmes actuels utilisant l’analyse multispectrale. La synchronisation entre une caméra hyperspectrale et un système de MOA a pu permettre l’acquisition linéaire de cubes hyperspectraux sur différents minéraux opaques. À l’aide de ces mesures brutes hyperspectrales, une base de données de réflectances hyperspectrales a pu être établie. À partir de cette base de données, une procédure supervisée de classification a été exécutée sur différents cubes hyperspectraux issus de l’analyse sur différents échantillons de minerais et standards minéralogiques (mise en section polie) par le dispositif expérimental. La procédure consistait à extraire des images monochromatiques à des longueurs d’onde judicieusement choisies sur ces cubes hyperspectraux bruts afin d’y exécuter des analyses d’images basiques associées à une méthode de classification booléenne pour obtenir des images classifiées minéralogiquement. Les résultats indiquent que cette procédure basique permet une classification minéralogique des images optiques propres et efficaces à partir de mesures hyperspectrales optiques. Les travaux de ce présent doctorat se sont ensuite focalisés sur différentes études comparatives et études de cas d’applications en contexte géométallurgique de la MOA, des études encore manquantes dans le domaine. Le projet Dumont Nickel a ainsi été particulièrement étudié, notamment parce que le gisement nécessite une approche géométallurgique du fait de sa métallogénie particulière. Le défi de développement d’un projet tel que Dumont Nickel consiste à pouvoir quantifier le nickel dit métallurgiquement récupérable à l’aide d’une méthode de quantification minéralogique abordable. Ces travaux proposent de pouvoir quantifier la minéralogie des minerais du gisement pour les futures opérations minières en utilisant le MOA. L’objectif a été de caractériser quatre échantillons de minerais représentatifs des quatre domaines géométallurgiques du gisement par MOA. Ces résultats ont été comparés aux données de quantification minéralogique existantes pour les mêmes échantillons acquis par QEMSCAN®. Les résultats de quantifications minéralogiques obtenus avec les deux techniques ont été comparés en mettant l'accent sur la distribution minéralogique du nickel dans les minéraux opaques. Cette étude comparative prouve l'efficacité de la MOA à des fins de quantification minéralogique telle qu'appliquée aux échantillons étudiés du projet Dumont Nickel. Cette procédure de quantification minéralogique des minéraux opaques a été ensuite poursuivie sur 12 autres échantillons du gisement. Le but a été de vérifier si le MOA attribue les mêmes domaines géométallurgiques que les analyses QEMSCAN® sur ces mêmes échantillons, selon la quantification des minéraux opaques qu’il permet. Les résultats montrent que le MOA est une alternative fiable au QEMSCAN® et peut être utilisé pour l'attribution de domaine pour le projet Dumont Nickel. Néanmoins, ces études comparatives en contexte géométallurgique ont permis de mettre en exergue les limites du système de MOA utilisé au cours du doctorat. Ces limites sont l’impossibilité pour le système de pouvoir détecter les particules transparentes (limite qui a fait l’objet de travaux au cours du doctorat) et de pouvoir les identifier, mais aussi d’autres limites de l’analyse multispectrale optique que propose le système (aberration chromatique). Une troisième étude comparative sur les différents concentrés de flottations du concentrateur LaRonde a aussi pu prouver que le système de MOA utilisé donne des résultats de quantification minéralogique proche du système QEMSCAN®. Cette dernière étude a aussi mis un avant une des limites de l’analyse multispectrale du système : le phénomène d’effet de bordure, expliquant les différences de quantification obtenue entre les deux techniques homologues. Enfin, afin de répondre aux manques d’études de cas d’applications de la MOA, le doctorat a recommandé plusieurs méthodologies d’intégration de la MOA à des fins géométallurgiques dans un contexte général d'un gisement de sulfure polymétallique/aurifère. Les principales étapes des projets miniers (exploration/géologie, faisabilité/programme géométallurgique, exploitation/production et gestion des rejets miniers) ont été utilisées pour illustrer les différentes méthodes proposées. La MOA permet ainsi d'obtenir des données minéralogiques pertinentes dès les premières étapes d'un projet minier et d'intégrer la minéralogie opérationnelle dans les processus de développement d’un circuit de traitement. De nombreux exemples illustrant la quantification minéralogique par MOA ont ainsi été fournis pour chaque étape du cycle minier, ce qui permet d'étayer la définition de différents domaines géométallurgique et géoenvironnementale d'un gisement

    Analysis, Design and Fabrication of Micromixers, Volume II

    Get PDF
    Micromixers are an important component in micrototal analysis systems and lab-on-a-chip platforms which are widely used for sample preparation and analysis, drug delivery, and biological and chemical synthesis. The Special Issue "Analysis, Design and Fabrication of Micromixers II" published in Micromachines covers new mechanisms, numerical and/or experimental mixing analysis, design, and fabrication of various micromixers. This reprint includes an editorial, two review papers, and eleven research papers reporting on five active and six passive micromixers. Three of the active micromixers have electrokinetic driving force, but the other two are activated by mechanical mechanism and acoustic streaming. Three studies employs non-Newtonian working fluids, one of which deals with nano-non-Newtonian fluids. Most of the cases investigated micromixer design

    Stochastic modelling and inference of ocean transport

    Get PDF
    Inference of ocean dynamical properties from observations requires a suite of sta- tistical tools. In this thesis we assemble and develop a selection of useful methods for oceanographic inference problems. Our work is centred around the modelling of ocean transport. We consider Lagrangian observations, including those obtained from surface drifters. We adopt a Bayesian approach which offers a coherent frame- work for diagnosing and predicting ocean transport and enables principled uncer- tainty quantification. We also emphasise the role of stochastic models. We begin with the problem of comparing stochastic models on the basis of ob- servations. We apply Bayesian model comparison to classical stochastic differential equation models of turbulent dispersion given trajectory data generated by simula- tion of particles in an idealised forced–dissipative model of two-dimensional turbu- lence. We discuss how model preference is quantifiably sensitive to the timescale on which the models are applied. The method is widely applicable and accounts for uncertainty in model parameters. We then consider purely data-driven models for particle dynamics. In particular we build a probabilistic neural network model of the single-particle transition density given observations from the Global Drifter Program. The transition density model can be used either to emulate surface transport, by modelling trajectories as a discrete- time Markov process, or to estimate spatially-varying dynamical statistics including diffusivity. As is standard for probabilistic neural networks we train our model to maximise the likelihood of data. The model outperforms existing stochastic models, as assessed by skill scores for probabilistic forecasts, and is better able to deal with non-uniform data than standard methods. A weakness of our transition density model is that, since it is trained by maximum likelihood rather than Bayesian inference, its predictions come without uncertainty quantification. This is especially concerning in regions where little data is available and point estimates of statistics such as diffusivity cannot be trusted. With this mo- tivation we discuss state-of-the-art methods in approximate Bayesian inference and their effectiveness in building Bayesian neural networks. We highlight deficiencies in current methods and identify the key challenges in providing uncertainty quan- tification with neural network models. We illustrate these issues both in a simple one-dimensional problem and in a Bayesian version of our transition density model

    Self-generated turbulent reconnection

    Get PDF

    Numerical simulations of viscoelastic interfacial flows

    Get PDF
    While several experimental and numerical studies for Newtonian sprays have been conducted, the exploration of their non-Newtonian counterparts has received comparatively little attention. Achieving a fundamental understanding of the physical phenomena governing spray formation of this type of flow remains a challenge. The numerical simulations of the spray formation of a non-Newtonian fluid still offer substantial challenges, but it is reflective of industrial applications (i.e. spray-drying) and can lead to the optimisation of spray processes containing complex fluids. This thesis aims to provide the basis for the numerical examination of non-Newtonian atomisation and spray systems. We begin with axisymmetric simulations of an impulsively-started viscoelastic jet exiting a nozzle and entering a stagnant gas phase using the open-source code Basilisk. This code allows for efficient computations through an adaptively-refined volume-of-fluid technique that can accurately capture the interface. We use the FENE-P constitutive equation to describe the viscoelasticity of the fluid and employ the log-conformation transformation, which provides stable solutions for the conformation tensor. For the first time, the entire jetting and breakup process of a viscoelastic fluid is simulated, including the flow through the nozzle, which results in an inhomogeneous initial radial stress distribution that affects the subsequent breakup dynamics. The evolution of the velocity field and the elastic stresses in the nozzle are validated against analytical solutions, and the early-stage dynamics of the jet are compared favourably to the predictions of linear stability theory. We explore the effect of flow inside the nozzle on the thinning dynamics of the viscoelastic jet, which develops distinctive "beads-on-a-stringstructures", via analysis of the spatiotemporal evolution of the polymeric stresses. We also systematically investigate the dependence of the filament thinning and breakup characteristics on the axial momentum of the jet and the extensibility of the dissolved polymer chains. We also probe how the secondary droplet formation can be controlled by the finite extensibility of the polymeric chains, as well as the wavenumber of the forced oscillation of the injected liquid at the nozzle inlet. In addition, we study numerically the thinning and breakup in a Dripping-onto-Substrate (DoS) rheometry. The DoS is a conceptually-simple, but dynamically-complex, probe of the extensional rheology of low-viscosity non-Newtonian fluids. It exploits the capillary-driven thinning of a liquid bridge, produced by a single drop as it is dispensed from a syringe pump and spreads laterally onto a solid substrate. By following the filament thinning process, the extensional viscosity and relaxation time of the sample can be determined. Importantly, DoS rheometry allows experimentalists to measure the extensional properties of solutions with lower viscosity than is possible with commercially-available capillary break-up extensional rheometers. Understanding the fluid mechanics underlying the operation of DoS is essential for optimising and extending the performance of this protocol. To achieve this, we employ a computational rheology approach using adaptively-refined axisymmetric numerical simulations with the Basilisk code. The volume-of-fluid technique is used to resolve the moving interface, and the log-conformation transformation provides a stable and accurate solution of the viscoelastic constitutive equation that describes the rheology of the thinning liquid filament. Here, we focus on understanding the role of elasticity and finite chain extensibility in controlling the elasto-capillary (EC) regime, as well as the perturbative effects that gravity and the substrate wettability play in establishing the evolution of the self-similar thinning and pinch-off dynamics. To illustrate the interplay of these different forces, we construct a simple one-dimensional model that captures the initial rate of thinning when the interplay of inertia and capillarity dominates; the model also captures the structure of the transition region to the nonlinear EC regime where the rapidly growing elastic tensile stresses in the thread balance the capillary pressure as the filament thins towards breakup. Finally, we develop and test a rheological model for avoiding the numerical challenges associated with the commonly-used constitutive equations for viscoelastic extensional flows, which accounts for the changes in the fluid viscosity based on the principal invariants of the deviatoric stress tensor. We validate the predictions of the model against a free-filament thinning and a jetting flow configuration of a FENE-P fluid, highlighting its capability to account for a substantial increase in viscosity under elongation. The model, however, fails to exhibit all of the characteristic viscoelastic flow regimes observed in our FENE-P-based simulation results. This highlights the need for further model improvement incorporating the flow kinematics history, a distinctive characteristic of viscoelasticity, which will be the subject of future work.Open Acces

    Physics-Aware Convolutional Neural Networks for Computational Fluid Dynamics

    Get PDF
    Determining the behavior of fluids is of interest in many fields. In this work, we focus on incompressible, viscous, Newtonian fluids, which are well described by the incompressible Navier-Stokes equations. A common approach to solve them approximately is to perform Computational Fluid Dynamics (CFD) simulations. However, CFD simulations are very expensive and must be repeated if the geometry changes even slightly. We consider Convolutional Neural Networks (CNNs) as surrogate models for CFD simulations for various geometries. This can also be considered as operator learning. Typically, these models are trained on images of high-fidelity simulation results. The generation of this high-fidelity training data is expensive, and a fully data-driven approach usually requires a large data set. Therefore, we are interested in training a CNN in the absence of abundant training data. To this end, we leverage the underlying physics in the form of the governing equations to construct physical constraints that we then use to train a CNN. We present results for various model problems, including two- and three-dimensional flow in channels around obstacles of various sizes and in non-rectangular geometries, especially arteries and aneurysms. We compare our novel physics-aware approach to the state-of-the-art data-based approach and also to a combination of the two, a combined or hybrid approach. In addition, we present results for an extension of our approach to include variations in the boundary conditions
    • …
    corecore