13,702 research outputs found

    Rate analysis of inexact dual first order methods: Application to distributed MPC for network systems

    Full text link
    In this paper we propose and analyze two dual methods based on inexact gradient information and averaging that generate approximate primal solutions for smooth convex optimization problems. The complicating constraints are moved into the cost using the Lagrange multipliers. The dual problem is solved by inexact first order methods based on approximate gradients and we prove sublinear rate of convergence for these methods. In particular, we provide, for the first time, estimates on the primal feasibility violation and primal and dual suboptimality of the generated approximate primal and dual solutions. Moreover, we solve approximately the inner problems with a parallel coordinate descent algorithm and we show that it has linear convergence rate. In our analysis we rely on the Lipschitz property of the dual function and inexact dual gradients. Further, we apply these methods to distributed model predictive control for network systems. By tightening the complicating constraints we are also able to ensure the primal feasibility of the approximate solutions generated by the proposed algorithms. We obtain a distributed control strategy that has the following features: state and input constraints are satisfied, stability of the plant is guaranteed, whilst the number of iterations for the suboptimal solution can be precisely determined.Comment: 26 pages, 2 figure

    Primal Recovery from Consensus-Based Dual Decomposition for Distributed Convex Optimization

    Get PDF
    Dual decomposition has been successfully employed in a variety of distributed convex optimization problems solved by a network of computing and communicating nodes. Often, when the cost function is separable but the constraints are coupled, the dual decomposition scheme involves local parallel subgradient calculations and a global subgradient update performed by a master node. In this paper, we propose a consensus-based dual decomposition to remove the need for such a master node and still enable the computing nodes to generate an approximate dual solution for the underlying convex optimization problem. In addition, we provide a primal recovery mechanism to allow the nodes to have access to approximate near-optimal primal solutions. Our scheme is based on a constant stepsize choice and the dual and primal objective convergence are achieved up to a bounded error floor dependent on the stepsize and on the number of consensus steps among the nodes

    A Primal-Dual Augmented Lagrangian

    Get PDF
    Nonlinearly constrained optimization problems can be solved by minimizing a sequence of simpler unconstrained or linearly constrained subproblems. In this paper, we discuss the formulation of subproblems in which the objective is a primal-dual generalization of the Hestenes-Powell augmented Lagrangian function. This generalization has the crucial feature that it is minimized with respect to both the primal and the dual variables simultaneously. A benefit of this approach is that the quality of the dual variables is monitored explicitly during the solution of the subproblem. Moreover, each subproblem may be regularized by imposing explicit bounds on the dual variables. Two primal-dual variants of conventional primal methods are proposed: a primal-dual bound constrained Lagrangian (pdBCL) method and a primal-dual â„“\ell1 linearly constrained Lagrangian (pdâ„“\ell1-LCL) method

    Playing with Duality: An Overview of Recent Primal-Dual Approaches for Solving Large-Scale Optimization Problems

    Full text link
    Optimization methods are at the core of many problems in signal/image processing, computer vision, and machine learning. For a long time, it has been recognized that looking at the dual of an optimization problem may drastically simplify its solution. Deriving efficient strategies which jointly brings into play the primal and the dual problems is however a more recent idea which has generated many important new contributions in the last years. These novel developments are grounded on recent advances in convex analysis, discrete optimization, parallel processing, and non-smooth optimization with emphasis on sparsity issues. In this paper, we aim at presenting the principles of primal-dual approaches, while giving an overview of numerical methods which have been proposed in different contexts. We show the benefits which can be drawn from primal-dual algorithms both for solving large-scale convex optimization problems and discrete ones, and we provide various application examples to illustrate their usefulness

    Getting Feasible Variable Estimates From Infeasible Ones: MRF Local Polytope Study

    Full text link
    This paper proposes a method for construction of approximate feasible primal solutions from dual ones for large-scale optimization problems possessing certain separability properties. Whereas infeasible primal estimates can typically be produced from (sub-)gradients of the dual function, it is often not easy to project them to the primal feasible set, since the projection itself has a complexity comparable to the complexity of the initial problem. We propose an alternative efficient method to obtain feasibility and show that its properties influencing the convergence to the optimum are similar to the properties of the Euclidean projection. We apply our method to the local polytope relaxation of inference problems for Markov Random Fields and demonstrate its superiority over existing methods.Comment: 20 page, 4 figure

    Convex optimization over intersection of simple sets: improved convergence rate guarantees via an exact penalty approach

    Full text link
    We consider the problem of minimizing a convex function over the intersection of finitely many simple sets which are easy to project onto. This is an important problem arising in various domains such as machine learning. The main difficulty lies in finding the projection of a point in the intersection of many sets. Existing approaches yield an infeasible point with an iteration-complexity of O(1/ε2)O(1/\varepsilon^2) for nonsmooth problems with no guarantees on the in-feasibility. By reformulating the problem through exact penalty functions, we derive first-order algorithms which not only guarantees that the distance to the intersection is small but also improve the complexity to O(1/ε)O(1/\varepsilon) and O(1/ε)O(1/\sqrt{\varepsilon}) for smooth functions. For composite and smooth problems, this is achieved through a saddle-point reformulation where the proximal operators required by the primal-dual algorithms can be computed in closed form. We illustrate the benefits of our approach on a graph transduction problem and on graph matching
    • …
    corecore