1,224 research outputs found

    Iris: an Extensible Application for Building and Analyzing Spectral Energy Distributions

    Get PDF
    Iris is an extensible application that provides astronomers with a user-friendly interface capable of ingesting broad-band data from many different sources in order to build, explore, and model spectral energy distributions (SEDs). Iris takes advantage of the standards defined by the International Virtual Observatory Alliance, but hides the technicalities of such standards by implementing different layers of abstraction on top of them. Such intermediate layers provide hooks that users and developers can exploit in order to extend the capabilities provided by Iris. For instance, custom Python models can be combined in arbitrary ways with the Iris built-in models or with other custom functions. As such, Iris offers a platform for the development and integration of SED data, services, and applications, either from the user's system or from the web. In this paper we describe the built-in features provided by Iris for building and analyzing SEDs. We also explore in some detail the Iris framework and software development kit, showing how astronomers and software developers can plug their code into an integrated SED analysis environment.Comment: 18 pages, 8 figures, accepted for publication in Astronomy & Computin

    Hybrid PolyLingual Object Model: An Efficient and Seamless Integration of Java and Native Components on the Dalvik Virtual Machine

    Get PDF
    Copyright © 2014 Yukun Huang et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. JNI in the Android platform is often observed with low efficiency and high coding complexity. Although many researchers have investigated the JNI mechanism, few of them solve the efficiency and the complexity problems of JNI in the Android platform simultaneously. In this paper, a hybrid polylingual object (HPO) model is proposed to allow a CAR object being accessed as a Java object and as vice in the Dalvik virtual machine. It is an acceptable substitute for JNI to reuse the CAR-compliant components in Android applications in a seamless and efficient way. The metadata injection mechanism is designed to support the automatic mapping and reflection between CAR objects and Java objects. A prototype virtual machine, called HPO-Dalvik, is implemented by extending the Dalvik virtual machine to support the HPO model. Lifespan management, garbage collection, and data type transformation of HPO objects are also handled in the HPO-Dalvik virtual machine automatically. The experimental result shows that the HPO model outweighs the standard JNI in lower overhead on native side, better executing performance with no JNI bridging code being demanded. 1

    The Official Student Newspaper of UAS

    Get PDF
    UAS Answers: everybody's got one... -- Bring back the Communications minor -- Welcome to the Whalesong -- UAS In Brief -- Preparing for the Power & Privilege Symposium -- UAS students qualify for free software -- Students get your pens to paper -- Pizza with the UA President -- Appropriate or appropriation -- The horror of plastic at the Lakeside Grill -- From command inspections to due dates and deadlines -- Dancing to the rhythm of Alaska Native drumming -- The UAS latte factor -- Off Campus Calendar -- On Campus Calenda

    Using XML views to improve data-independence of distributed applications that share data

    Get PDF
    The development and maintenance of distributed software applications that support and make efficient use of heterogeneous networked systems is very challenging. One aspect of the complexity is that these distributed applications often need to access shared data, and different applications sharing the data may have different needs and may access different parts of the data. Maintenance and modification are especially difficult when the underlying structure of the data is changed for new requirements. The eXtensible Markup Language, or XML, has emerged as the universal standard for exchanging and externalizing data. It is also widely used for information modeling in an environment consisting of heterogeneous information sources. CORBA is a distributed object technology allowing applications on heterogeneous platforms to communicate through commonly defined services providing a scalable infrastructure for today\u27s distributed systems. To improve data independence, we propose an approach based on XML standards and the notion of views to develop and modify distributed applications which access shared data. In our approach, we model the shared data using XML, and generate different XML views of the data for different applications according to the DTDs of the XML views and the application logic. When the underlying data structure changes, new views are generated systematically. We adopt CORBA as the distributed architecture in our approach. Our thesis is that: views to support data-independence of distributed computing applications can be generated systematically from application logic, CORBA IDL and XML DTD.Dept. of Computer Science. Paper copy at Leddy Library: Theses & Major Papers - Basement, West Bldg. / Call Number: Thesis2002 .L86. Source: Masters Abstracts International, Volume: 41-04, page: 1113. Adviser: Richard Frost. Thesis (M.Sc.)--University of Windsor (Canada), 2002

    ETL queues for active data warehousing

    Full text link

    Development and evaluation of Formula Editor (a tool-based approach to enhance reusability in software product line model checking) on SAFER case study

    Get PDF
    Although model checking is extensively used for verification of single software systems, currently there is insufficient support for model checking in product lines. The presence of commonalities within the different products in the product line requires that the properties and the corresponding specifications for these properties be verified for every product in the product line. Specification and management of properties for every product in a product line can incur high overhead and make the task of model checking very difficult. It is hence essential to exploit the presence of commonalities to our advantage by providing reusability in model checking of product lines. Since different products in the product line need to be checked for same or similar properties, reuse of properties specified for one product for other products within a product line will significantly reduce the overall property specification and verification time. FormulaEditor is a property specification and management tool for enhancing the reusability of model checking of software product lines. The core of the technique is a product line-oriented user interface to guide users in generating, selecting, managing, and reusing useful product line properties, and patterns of properties for model checking. The previous version of the FormulaEditor tool supports Cadence SMV models, but not the typical CMU-SMV models. This work extends the FormulaEditor tool to allow verification of models written in CMU-SMV. The advantage of providing support to another model checker is twofold: first, it enhances the tool\u27s capability to check design specifications written in different models; and second, it allows users to specify the same design in different modeling languages to detect problems

    Programming tools for intelligent systems

    Full text link
    Les outils de programmation sont des programmes informatiques qui aident les humains à programmer des ordinateurs. Les outils sont de toutes formes et tailles, par exemple les éditeurs, les compilateurs, les débogueurs et les profileurs. Chacun de ces outils facilite une tâche principale dans le flux de travail de programmation qui consomme des ressources cognitives lorsqu’il est effectué manuellement. Dans cette thèse, nous explorons plusieurs outils qui facilitent le processus de construction de systèmes intelligents et qui réduisent l’effort cognitif requis pour concevoir, développer, tester et déployer des systèmes logiciels intelligents. Tout d’abord, nous introduisons un environnement de développement intégré (EDI) pour la programmation d’applications Robot Operating System (ROS), appelé Hatchery (Chapter 2). Deuxièmement, nous décrivons Kotlin∇, un système de langage et de type pour la programmation différenciable, un paradigme émergent dans l’apprentissage automatique (Chapter 3). Troisièmement, nous proposons un nouvel algorithme pour tester automatiquement les programmes différenciables, en nous inspirant des techniques de tests contradictoires et métamorphiques (Chapter 4), et démontrons son efficacité empirique dans le cadre de la régression. Quatrièmement, nous explorons une infrastructure de conteneurs basée sur Docker, qui permet un déploiement reproductible des applications ROS sur la plateforme Duckietown (Chapter 5). Enfin, nous réfléchissons à l’état actuel des outils de programmation pour ces applications et spéculons à quoi pourrait ressembler la programmation de systèmes intelligents à l’avenir (Chapter 6).Programming tools are computer programs which help humans program computers. Tools come in all shapes and forms, from editors and compilers to debuggers and profilers. Each of these tools facilitates a core task in the programming workflow which consumes cognitive resources when performed manually. In this thesis, we explore several tools that facilitate the process of building intelligent systems, and which reduce the cognitive effort required to design, develop, test and deploy intelligent software systems. First, we introduce an integrated development environment (IDE) for programming Robot Operating System (ROS) applications, called Hatchery (Chapter 2). Second, we describe Kotlin∇, a language and type system for differentiable programming, an emerging paradigm in machine learning (Chapter 3). Third, we propose a new algorithm for automatically testing differentiable programs, drawing inspiration from techniques in adversarial and metamorphic testing (Chapter 4), and demonstrate its empirical efficiency in the regression setting. Fourth, we explore a container infrastructure based on Docker, which enables reproducible deployment of ROS applications on the Duckietown platform (Chapter 5). Finally, we reflect on the current state of programming tools for these applications and speculate what intelligent systems programming might look like in the future (Chapter 6)
    • …
    corecore