60 research outputs found

    Performance Comparison of Time-Step-Driven versus Event-Driven Neural State Update Approaches in SpiNNaker

    Get PDF
    The SpiNNaker chip is a multi-core processor optimized for neuromorphic applications. Many SpiNNaker chips are assembled to make a highly parallel million core platform. This system can be used for simulation of a large number of neurons in real-time. SpiNNaker is using a general purpose ARM processor that gives a high amount of flexibility to implement different methods for processing spikes. Various libraries and packages are provided to translate a high-level description of Spiking Neural Networks (SNN) to low-level machine language that can be used in the ARM processors. In this paper, we introduce and compare three different methods to implement this intermediate layer of abstraction. We have examined the advantages of each method by various criteria, which can be useful for professional users to choose between them. All the codes that are used in this paper are available for academic propose.EU H2020 grant 644096 ECOMODEEU H2020 grant 687299 NEURAM3Ministry of Economy and Competitivity (Spain) / European Regional Development Fund TEC2015-63884-C2-1-P (COGNET

    Deep Spiking Neural Network model for time-variant signals classification: a real-time speech recognition approach

    Get PDF
    Speech recognition has become an important task to improve the human-machine interface. Taking into account the limitations of current automatic speech recognition systems, like non-real time cloud-based solutions or power demand, recent interest for neural networks and bio-inspired systems has motivated the implementation of new techniques. Among them, a combination of spiking neural networks and neuromorphic auditory sensors offer an alternative to carry out the human-like speech processing task. In this approach, a spiking convolutional neural network model was implemented, in which the weights of connections were calculated by training a convolutional neural network with specific activation functions, using firing rate-based static images with the spiking information obtained from a neuromorphic cochlea. The system was trained and tested with a large dataset that contains ”left” and ”right” speech commands, achieving 89.90% accuracy. A novel spiking neural network model has been proposed to adapt the network that has been trained with static images to a non-static processing approach, making it possible to classify audio signals and time series in real time.Ministerio de Economía y Competitividad TEC2016-77785-

    Conversion of Continuous-Valued Deep Networks to Efficient Event-Driven Networks for Image Classification

    Full text link
    Spiking neural networks (SNNs) can potentially offer an efficient way of doing inference because the neurons in the networks are sparsely activated and computations are event-driven. Previous work showed that simple continuous-valued deep Convolutional Neural Networks (CNNs) can be converted into accurate spiking equivalents. These networks did not include certain common operations such as max-pooling, softmax, batch-normalization and Inception-modules. This paper presents spiking equivalents of these operations therefore allowing conversion of nearly arbitrary CNN architectures. We show conversion of popular CNN architectures, including VGG-16 and Inception-v3, into SNNs that produce the best results reported to date on MNIST, CIFAR-10 and the challenging ImageNet dataset. SNNs can trade off classification error rate against the number of available operations whereas deep continuous-valued neural networks require a fixed number of operations to achieve their classification error rate. From the examples of LeNet for MNIST and BinaryNet for CIFAR-10, we show that with an increase in error rate of a few percentage points, the SNNs can achieve more than 2x reductions in operations compared to the original CNNs. This highlights the potential of SNNs in particular when deployed on power-efficient neuromorphic spiking neuron chips, for use in embedded applications

    An Event-Driven Multi-Kernel Convolution Processor Module for Event-Driven Vision Sensors

    Get PDF
    Event-Driven vision sensing is a new way of sensing visual reality in a frame-free manner. This is, the vision sensor (camera) is not capturing a sequence of still frames, as in conventional video and computer vision systems. In Event-Driven sensors each pixel autonomously and asynchronously decides when to send its address out. This way, the sensor output is a continuous stream of address events representing reality dynamically continuously and without constraining to frames. In this paper we present an Event-Driven Convolution Module for computing 2D convolutions on such event streams. The Convolution Module has been designed to assemble many of them for building modular and hierarchical Convolutional Neural Networks for robust shape and pose invariant object recognition. The Convolution Module has multi-kernel capability. This is, it will select the convolution kernel depending on the origin of the event. A proof-of-concept test prototype has been fabricated in a 0.35 m CMOS process and extensive experimental results are provided. The Convolution Processor has also been combined with an Event-Driven Dynamic Vision Sensor (DVS) for high-speed recognition examples. The chip can discriminate propellers rotating at 2 k revolutions per second, detect symbols on a 52 card deck when browsing all cards in 410 ms, or detect and follow the center of a phosphor oscilloscope trace rotating at 5 KHz.Unión Europea 216777 (NABAB)Ministerio de Ciencia e Innovación TEC2009-10639-C04-0

    Event-driven implementation of deep spiking convolutional neural networks for supervised classification using the SpiNNaker neuromorphic platform

    Get PDF
    Neural networks have enabled great advances in recent times due mainly to improved parallel computing capabilities in accordance to Moore’s Law, which allowed reducing the time needed for the parameter learning of complex, multi-layered neural architectures. However, with silicon technology reaching its physical limits, new types of computing paradigms are needed to increase the power efficiency of learning algorithms, especially for dealing with deep spatio-temporal knowledge on embedded applications. With the goal of mimicking the brain’s power efficiency, new hardware architectures such as the SpiNNaker board have been built. Furthermore, recent works have shown that networks using spiking neurons as learning units can match classical neural networks in supervised tasks. In this paper, we show that the implementation of state-of-the-art models on both the MNIST and the event-based NMNIST digit recognition datasets is possible on neuromorphic hardware. We use two approaches, by directly converting a classical neural network to its spiking version and by training a spiking network from scratch. For both cases, software simulations and implementations into a SpiNNaker 103 machine were performed. Numerical results approaching the state of the art on digit recognition are presented, and a new method to decrease the spike rate needed for the task is proposed, which allows a significant reduction of the spikes (up to 34 times for a fully connected architecture) while preserving the accuracy of the system. With this method, we provide new insights on the capabilities offered by networks of spiking neurons to efficiently encode spatio-temporal information.Consejo Nacional de Ciencia Y Tecnología (México) FC2016-1961European Union's Horizon 2020 No 824164 HERMESMinisterio de Ciencia, Innovación y Universidades TEC2015-63884-C2-1-

    SpiNNaker - A Spiking Neural Network Architecture

    Get PDF
    20 years in conception and 15 in construction, the SpiNNaker project has delivered the world’s largest neuromorphic computing platform incorporating over a million ARM mobile phone processors and capable of modelling spiking neural networks of the scale of a mouse brain in biological real time. This machine, hosted at the University of Manchester in the UK, is freely available under the auspices of the EU Flagship Human Brain Project. This book tells the story of the origins of the machine, its development and its deployment, and the immense software development effort that has gone into making it openly available and accessible to researchers and students the world over. It also presents exemplar applications from ‘Talk’, a SpiNNaker-controlled robotic exhibit at the Manchester Art Gallery as part of ‘The Imitation Game’, a set of works commissioned in 2016 in honour of Alan Turing, through to a way to solve hard computing problems using stochastic neural networks. The book concludes with a look to the future, and the SpiNNaker-2 machine which is yet to come

    Asynchronous spiking neurons, the natural key to exploit temporal sparsity

    Get PDF
    Inference of Deep Neural Networks for stream signal (Video/Audio) processing in edge devices is still challenging. Unlike the most state of the art inference engines which are efficient for static signals, our brain is optimized for real-time dynamic signal processing. We believe one important feature of the brain (asynchronous state-full processing) is the key to its excellence in this domain. In this work, we show how asynchronous processing with state-full neurons allows exploitation of the existing sparsity in natural signals. This paper explains three different types of sparsity and proposes an inference algorithm which exploits all types of sparsities in the execution of already trained networks. Our experiments in three different applications (Handwritten digit recognition, Autonomous Steering and Hand-Gesture recognition) show that this model of inference reduces the number of required operations for sparse input data by a factor of one to two orders of magnitudes. Additionally, due to fully asynchronous processing this type of inference can be run on fully distributed and scalable neuromorphic hardware platforms

    SpiNNaker - A Spiking Neural Network Architecture

    Get PDF
    20 years in conception and 15 in construction, the SpiNNaker project has delivered the world’s largest neuromorphic computing platform incorporating over a million ARM mobile phone processors and capable of modelling spiking neural networks of the scale of a mouse brain in biological real time. This machine, hosted at the University of Manchester in the UK, is freely available under the auspices of the EU Flagship Human Brain Project. This book tells the story of the origins of the machine, its development and its deployment, and the immense software development effort that has gone into making it openly available and accessible to researchers and students the world over. It also presents exemplar applications from ‘Talk’, a SpiNNaker-controlled robotic exhibit at the Manchester Art Gallery as part of ‘The Imitation Game’, a set of works commissioned in 2016 in honour of Alan Turing, through to a way to solve hard computing problems using stochastic neural networks. The book concludes with a look to the future, and the SpiNNaker-2 machine which is yet to come
    corecore