11,804 research outputs found

    Power Allocation in the TV White Space under Constraint on Secondary System Self-Interference

    Get PDF

    Secondary spectrum usage in TV white space

    Get PDF
    Currently, the use of TV frequencies is exclusively license based with the area not covered by licensed TV transmitters being known as TV white space. In TV white space, the spectrum can be reused by a secondary user. This thesis studies how the TV white space can be used by a cellular system. The study addresses the problems of how the access to the spectrum is arranged, how the spectrum usage is constrained and how much capacity a secondary system will have. The access to TV white space can be arranged by using spectrum sensing or a geolocation database. This spectrum sensing relies on the performance of the signal detection algorithm. The detector has to operate in a fading environment where it should identify very low signal levels. In this thesis, the detector performance in a slow and fast fading environment is modeled. The model indicates that for a sufficiently long measurement time the impact of the fast fading can be averaged out. Unfortunately, simple single antenna-based detectors are not able to operate at a low enough signal-to-noise level. We propose a novel multi antenna-based detection algorithm that is specially designed to operate in a fading environment. TV white space is characterized by the amount of spectrum available for secondary usage. Because of the signal detection errors, a system using the sensing-based access is not able to use the entire available spectrum. This dissertation provides a method for estimating the spectrum utilization efficiency. The method illustrates how the detection error level affects the amount of available spectrum. One of the central questions studied in this thesis is how to describe the interference generated by the secondary transmitters. In the conventional model, the interference is computed as the sum of the interfering powers from individual transmitters. An alternative approach, pursued here, is to characterize the transmitter by its transmission power density per area. With such a model, the interference computation is done by integrating over the secondary system deployment area. The proposed method simplifies the interference estimation process. In data communication systems the spectrum attractiveness depends on the data rate the system can provide. Within the scope of this work, the achievable data rate is computed for a cellular system. Such computation is described as an optimization problem. The solution to this problem is found by searching for the optimal power allocation among the cochannels and the adjacent channels of a nearby TV transmitter

    The Question of Spectrum: Technology, Management, and Regime Change

    Get PDF
    There is general agreement that the traditional command-and-control regulation of radio spectrum by the FCC (and NTIA) has failed. There is no general agreement on which regime should succeed it. Property rights advocates take Ronald Coase's advice that spectrum licenses should be sold off and traded in secondary markets, like any other assets. Commons advocates argue that new technologies cannot be accommodated by a licensing regime (either traditional or property rights) and that a commons regime leads to the most efficient means to deliver useful spectrum to the American public. This article reviews the scholarly history of this controversy, outlines the revolution of FCC thinking, and parses the question of property rights vs. commons into four distinct parts: new technology, spectrum uses, spectrum management, and the overarching legal regime. Advocates on both sides find much to agree about on the first three factors; the disagreement is focused on the choice of overarching regime to most efficiently and effectively make spectrum and its applications available to the American public. There are two feasible regime choices: a property rights regime and a mixed licensed/commons regime subject to regulation. The regime choice depends upon four factors: dispute resolution, transactions costs, tragedies of the commons and anticommons, and flexibility to changing technologies and demands. Each regime is described and analyzed against these four factors. With regard to pure transactions costs, commons may hold an advantage but it appears quite small. For all other factors, the property rights regime holds very substantial advantages relative to the mixed regime. I conclude that the choice comes down to markets vs. regulation as mechanism for allocating resources.

    Interference control and radio spectrum allocation in shared spectrum access

    Get PDF
    With demands on the radio spectrum intensifying, it is necessary to use this scarce resource as efficiently as possible. One way forward is to apply flexible authorization schemes such as shared spectrum access. While such schemes are expected to make additional radio resource available and lower the spectrum access barriers, they also bring new challenges toward effectively dealing with the created extra interference which degrades the performance of networks, limiting the potential gains in a shared use of spectrum. In this thesis, to address the interference issue, different spectrum access schemes and deployment scenarios are investigated.  Firstly, we consider licensed shared access where database-assisted TV white space network architecture is employed to facilitate the controlled access of the secondary system to the TV band. The operation of the secondary system is allowed only if the quality of service experienced by the incumbent users is preserved. Furthermore, the secondary system should benefit itself from utilizing the TV band in licensed shared access mode. One challenge for efficient operation of the licensed secondary system is to control the cross-tier interference generated at the TV receiver, taking into account the self-interference in the secondary system.  Secondly, we consider co-primary shared access where multiple operators share a part of their spectrum. This can be done in two different operational levels, users and cells. The user level is done in the context of D2D communications where two users subscribed to different operators can transmit directly to each other. The cell level allows spectrum sharing between two small cells, e.g., indoor and outdoor small cells, in a dense urban environments. The main challenges for such scenarios are to manage the cross-tier interference generated by other users or cells subscribed to different operators, and to identify the amount of radio spectrum each operator contributes.  There are several approaches to reduce the risk of interference, but they often come at a high price in terms of complexity and signaling overhead. In this thesis, we aim to propose low complexity mechanisms that take interference control and radio spectrum allocation into account. The proposed mechanisms are based on tractable models which characterize the effects of the fundamental design parameters on the system behavior in shared spectrum access. The models are leveraged to capture the statistic of the aggregate interference and its effects on the performance metrics

    TV White Spaces: A Pragmatic Approach

    Get PDF
    190 pages The editors and publisher have taken due care in preparation of this book, but make no expressed or implied warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of the use of the information contained herein. Links to websites imply neither responsibility for, nor approval of, the information contained in those other web sites on the part of ICTP. No intellectual property rights are transferred to ICTP via this book, and the authors/readers will be free to use the given material for educational purposes.  e ICTP will not transfer rights to other organizations, nor will it be used for any commercial purposes. ICTP is not to endorse or sponsor any particular commercial product, service or activity mentioned in this book. This book is released under the Attribution-NonCommercial-NoDerivatives ¦.þ International license. For more details regarding your rights to use and redistribute this work, see http://creativecommons.org/licenses/by-nc-nd/4.0/

    Spectrum Policy and Management

    Get PDF
    This project provides an examination of the FCC’s policies towards spectrum reallocation. The project examines the National Broadband Plan and how the FCC has approached the goals described within it. The demand for broadband communications has increased dramatically in recent years and has resulted in a predicted spectrum deficit in the near future. In addition to a number of spectrum auctions and their winners the project examines how the redistribution of spectrum impacts the broadband community. The project also provides an examination of spectrum reallocation and policy in other countries, to provide a broader view of spectrum policy. Finally the project examines new spectrum technologies and spectrum usage policies to further examine how the US’s spectrum policies should evolve
    • …
    corecore