91 research outputs found

    An Optimization Theoretical Framework for Resource Allocation over Wireless Networks

    Get PDF
    With the advancement of wireless technologies, wireless networking has become ubiquitous owing to the great demand of pervasive mobile applications. Some fundamental challenges exist for the next generation wireless network design such as time varying nature of wireless channels, co-channel interferences, provisioning of heterogeneous type of services, etc. So how to overcome these difficulties and improve the system performance have become an important research topic. Dynamic resource allocation is a general strategy to control the interferences and enhance the performance of wireless networks. The basic idea behind dynamic resource allocation is to utilize the channel more efficiently by sharing the spectrum and reducing interference through optimizing parameters such as the transmitting power, symbol transmission rate, modulation scheme, coding scheme, bandwidth, etc. Moreover, the network performance can be further improved by introducing diversity, such as multiuser, time, frequency, and space diversity. In addition, cross layer approach for resource allocation can provide advantages such as low overhead, more efficiency, and direct end-to-end QoS provision. The designers for next generation wireless networks face the common problem of how to optimize the system objective under the user Quality of Service (QoS) constraint. There is a need of unified but general optimization framework for resource allocation to allow taking into account a diverse set of objective functions with various QoS requirements, while considering all kinds of diversity and cross layer approach. We propose an optimization theoretical framework for resource allocation and apply these ideas to different network situations such as: 1.Centralized resource allocation with fairness constraint 2.Distributed resource allocation using game theory 3.OFDMA resource allocation 4.Cross layer approach On the whole, we develop a universal view of the whole wireless networks from multiple dimensions: time, frequency, space, user, and layers. We develop some schemes to fully utilize the resources. The success of the proposed research will significantly improve the way how to design and analyze resource allocation over wireless networks. In addition, the cross-layer optimization nature of the problem provides an innovative insight into vertical integration of wireless networks

    Game theoretic approach to medium access control in wireless networks

    Get PDF
    Wireless networking is fast becoming the primary method for people to connect to the Internet and with each other. The available wireless spectrum is increasingly congested, with users demanding higher performance and reliability from their wireless connections. This thesis proposes a game-theoretic random access model, compliant with the IEEE 802.11 standard, which can be integrated into the distributed coordination function (DCF). The objective is to design a game theoretic model that potentially optimizes throughput and fairness in each node independently and, therefore, minimise channel access delay. This dissertation presents a game-theoretic MAC layer implementation for single-cell networks and centralised DCF in the presence of hidden terminals to show how game theory can be applied to improve wireless performance. A utility function is proposed, such that it can decouple the protocol's dynamic adaptation to channel load from collision detection. It is demonstrated that the proposed model can reach a Nash equilibrium that results in a relatively stable contention window, provided that a node adapts its behaviour to the idle rate of the broadcast channel, coupled with observation of its own transmission activity. This dissertation shows that the proposed game-theoretic model is capable of achieving much higher throughput than the standard IEEE 802.11 DCF with better short-time fairness and significant improvements in the channel access delay

    Recognition of Nonideal Iris Images Using Shape Guided Approach and Game Theory

    Get PDF
    Most state-of-the-art iris recognition algorithms claim to perform with a very high recognition accuracy in a strictly controlled environment. However, their recognition accuracies significantly decrease when the acquired images are affected by different noise factors including motion blur, camera diffusion, head movement, gaze direction, camera angle, reflections, contrast, luminosity, eyelid and eyelash occlusions, and problems due to contraction and dilation. The main objective of this thesis is to develop a nonideal iris recognition system by using active contour methods, Genetic Algorithms (GAs), shape guided model, Adaptive Asymmetrical Support Vector Machines (AASVMs) and Game Theory (GT). In this thesis, the proposed iris recognition method is divided into two phases: (1) cooperative iris recognition, and (2) noncooperative iris recognition. While most state-of-the-art iris recognition algorithms have focused on the preprocessing of iris images, recently, important new directions have been identified in iris biometrics research. These include optimal feature selection and iris pattern classification. In the first phase, we propose an iris recognition scheme based on GAs and asymmetrical SVMs. Instead of using the whole iris region, we elicit the iris information between the collarette and the pupil boundary to suppress the effects of eyelid and eyelash occlusions and to minimize the matching error. In the second phase, we process the nonideal iris images that are captured in unconstrained situations and those affected by several nonideal factors. The proposed noncooperative iris recognition method is further divided into three approaches. In the first approach of the second phase, we apply active contour-based curve evolution approaches to segment the inner/outer boundaries accurately from the nonideal iris images. The proposed active contour-based approaches show a reasonable performance when the iris/sclera boundary is separated by a blurred boundary. In the second approach, we describe a new iris segmentation scheme using GT to elicit iris/pupil boundary from a nonideal iris image. We apply a parallel game-theoretic decision making procedure by modifying Chakraborty and Duncan's algorithm to form a unified approach, which is robust to noise and poor localization and less affected by weak iris/sclera boundary. Finally, to further improve the segmentation performance, we propose a variational model to localize the iris region belonging to the given shape space using active contour method, a geometric shape prior and the Mumford-Shah functional. The verification and identification performance of the proposed scheme is validated using four challenging nonideal iris datasets, namely, the ICE 2005, the UBIRIS Version 1, the CASIA Version 3 Interval, and the WVU Nonideal, plus the non-homogeneous combined dataset. We have conducted several sets of experiments and finally, the proposed approach has achieved a Genuine Accept Rate (GAR) of 97.34% on the combined dataset at the fixed False Accept Rate (FAR) of 0.001% with an Equal Error Rate (EER) of 0.81%. The highest Correct Recognition Rate (CRR) obtained by the proposed iris recognition system is 97.39%

    Master of Science

    Get PDF
    thesisThis thesis details the development of the Algorithmic Robotics Laboratory, its experimental software environment, and a case study featuring a novel hardware validation of optimal reciprocal collision avoidance. We constructed a robotics laboratory in both software and hardware in which to perform our experiments. This lab features a netted flying volume with motion capture and two custom quadrotors. Also, two experimental software architectures are developed for actuating both ground and aerial robots within a Linux Robot Operating System environment. The first of the frameworks is based upon a single finite state machine program which managed each aspect of the experiment. Concerns about the complexity and reconfigurability of the finite state machine prompted the development of a second framework. This final framework is a multimodal structure featuring programs which focus on these specific functions: State Estimation, Robot Drivers, Experimental Controllers, Inputs, Human Robot Interaction, and a program tailored to the specifics of the algorithm tested in the experiment. These modular frameworks were used to fulfill the mission of the Algorithmic Robotics Lab, in that they were developed to validate robotics algorithms in experiments that were previously only shown in simulation. A case study into collision avoidance was used to mark the foundation of the laboratory through the proving of an optimal reciprocal collision avoidance algorithm for the first time in hardware. In the case study, two human-controlled quadrotors were maliciously flown in colliding trajectories. Optimal reciprocal collision avoidance was demonstrated for the first time on completely independent agents with local sensing. The algorithm was shown to be robust to violations of its inherent assumptions about the dynamics of agents and the ability for those agents to sense imminent collisions. These experiments, in addition to the mathematical foundation of exponential convergence, submits th a t optimal reciprocal collision avoidance is a viable method for holonomic robots in both 2-D and 3-D with noisy sensing. A basis for the idea of reciprocal dance, a motion often seen in human collision avoidance, is also suggested in demonstration to be a product of uncertainty about the state of incoming agents. In the more than one hundred tests conducted in multiple environments, no midair collisions were ever produced

    Multi-Agent Systems

    Get PDF
    A multi-agent system (MAS) is a system composed of multiple interacting intelligent agents. Multi-agent systems can be used to solve problems which are difficult or impossible for an individual agent or monolithic system to solve. Agent systems are open and extensible systems that allow for the deployment of autonomous and proactive software components. Multi-agent systems have been brought up and used in several application domains

    Neuroscience and Settlement: An Examination of Scientific Innovations and Practical Applications

    Get PDF
    Published in cooperation with the American Bar Association Section of Dispute Resolutio

    Multi Agent Systems

    Get PDF
    Research on multi-agent systems is enlarging our future technical capabilities as humans and as an intelligent society. During recent years many effective applications have been implemented and are part of our daily life. These applications have agent-based models and methods as an important ingredient. Markets, finance world, robotics, medical technology, social negotiation, video games, big-data science, etc. are some of the branches where the knowledge gained through multi-agent simulations is necessary and where new software engineering tools are continuously created and tested in order to reach an effective technology transfer to impact our lives. This book brings together researchers working in several fields that cover the techniques, the challenges and the applications of multi-agent systems in a wide variety of aspects related to learning algorithms for different devices such as vehicles, robots and drones, computational optimization to reach a more efficient energy distribution in power grids and the use of social networks and decision strategies applied to the smart learning and education environments in emergent countries. We hope that this book can be useful and become a guide or reference to an audience interested in the developments and applications of multi-agent systems

    Human-Robot Collaborations in Industrial Automation

    Get PDF
    Technology is changing the manufacturing world. For example, sensors are being used to track inventories from the manufacturing floor up to a retail shelf or a customer’s door. These types of interconnected systems have been called the fourth industrial revolution, also known as Industry 4.0, and are projected to lower manufacturing costs. As industry moves toward these integrated technologies and lower costs, engineers will need to connect these systems via the Internet of Things (IoT). These engineers will also need to design how these connected systems interact with humans. The focus of this Special Issue is the smart sensors used in these human–robot collaborations
    • …
    corecore