30 research outputs found

    Command & Control: Understanding, Denying and Detecting - A review of malware C2 techniques, detection and defences

    Full text link
    In this survey, we first briefly review the current state of cyber attacks, highlighting significant recent changes in how and why such attacks are performed. We then investigate the mechanics of malware command and control (C2) establishment: we provide a comprehensive review of the techniques used by attackers to set up such a channel and to hide its presence from the attacked parties and the security tools they use. We then switch to the defensive side of the problem, and review approaches that have been proposed for the detection and disruption of C2 channels. We also map such techniques to widely-adopted security controls, emphasizing gaps or limitations (and success stories) in current best practices.Comment: Work commissioned by CPNI, available at c2report.org. 38 pages. Listing abstract compressed from version appearing in repor

    Industrial and Critical Infrastructure Security: Technical Analysis of Real-Life Security Incidents

    Get PDF
    Critical infrastructures and industrial organizations aggressively move towards integrating elements of modern Information Technology (IT) into their monolithic Operational Technology (OT) architectures. Yet, as OT systems progressively become more and more interconnected, they silently have turned into alluring targets for diverse groups of adversaries. Meanwhile, the inherent complexity of these systems, along with their advanced-in-age nature, prevents defenders from fully applying contemporary security controls in a timely manner. Forsooth, the combination of these hindering factors has led to some of the most severe cybersecurity incidents of the past years. This work contributes a full-fledged and up-to-date survey of the most prominent threats and attacks against Industrial Control Systems and critical infrastructures, along with the communication protocols and devices adopted in these environments. Our study highlights that threats against critical infrastructure follow an upward spiral due to the mushrooming of commodity tools and techniques that can facilitate either the early or late stages of attacks. Furthermore, our survey exposes that existing vulnerabilities in the design and implementation of several of the OT-specific network protocols and devices may easily grant adversaries the ability to decisively impact physical processes. We provide a categorization of such threats and the corresponding vulnerabilities based on various criteria. The selection of the discussed incidents and identified vulnerabilities aims to provide a holistic view of the specific threats that target Industrial Control Systems and critical infrastructures. As far as we are aware, this is the first time an exhaustive and detailed survey of this kind is attempted

    Deteção de atividades ilícitas de software Bots através do DNS

    Get PDF
    DNS is a critical component of the Internet where almost all Internet applications and organizations rely on. Its shutdown can deprive them from being part of the Internet, and hence, DNS is usually the only protocol to be allowed when Internet access is firewalled. The constant exposure of this protocol to external entities force corporations to always be observant of external rogue software that may misuse the DNS to establish covert channels and perform multiple illicit activities, such as command and control and data exfiltration. Most current solutions for bot malware and botnet detection are based on Deep Packet Inspection techniques, such as analyzing DNS query payloads, which may reveal private and sensitive information. In addiction, the majority of existing solutions do not consider the usage of licit and encrypted DNS traffic, where Deep Packet Inspection techniques are impossible to be used. This dissertation proposes mechanisms to detect malware bots and botnet behaviors on DNS traffic that are robust to encrypted DNS traffic and that ensure the privacy of the involved entities by analyzing instead the behavioral patterns of DNS communications using descriptive statistics over collected network metrics such as packet rates, packet lengths, and silence and activity periods. After characterizing DNS traffic behaviors, a study of the processed data is conducted, followed by the training of Novelty Detection algorithms with the processed data. Models are trained with licit data gathered from multiple licit activities, such as reading the news, studying, and using social networks, in multiple operating systems, browsers, and configurations. Then, the models were tested with similar data, but containing bot malware traffic. Our tests show that our best performing models achieve detection rates in the order of 99%, and 92% for malware bots using low throughput rates. This work ends with some ideas for a more realistic generation of bot malware traffic, as the current DNS Tunneling tools are limited when mimicking licit DNS usages, and for a better detection of malware bots that use low throughput rates.O DNS é um componente crítico da Internet, já que quase todas as aplicações e organizações que a usam dependem dele para funcionar. A sua privação pode deixá-las de fazerem parte da Internet, e por causa disso, o DNS é normalmente o único protocolo permitido quando o acesso à Internet está restrito. A exposição constante deste protocolo a entidades externas obrigam corporações a estarem sempre atentas a software externo ilícito que pode fazer uso indevido do DNS para estabelecer canais secretos e realizar várias atividades ilícitas, como comando e controlo e exfiltração de dados. A maioria das soluções atuais para detecção de malware bots e de botnets são baseadas em técnicas inspeção profunda de pacotes, como analizar payloads de pedidos de DNS, que podem revelar informação privada e sensitiva. Além disso, a maioria das soluções existentes não consideram o uso lícito e cifrado de tráfego DNS, onde técnicas como inspeção profunda de pacotes são impossíveis de serem usadas. Esta dissertação propõe mecanismos para detectar comportamentos de malware bots e botnets que usam o DNS, que são robustos ao tráfego DNS cifrado e que garantem a privacidade das entidades envolvidas ao analizar, em vez disso, os padrões comportamentais das comunicações DNS usando estatística descritiva em métricas recolhidas na rede, como taxas de pacotes, o tamanho dos pacotes, e os tempos de atividade e silêncio. Após a caracterização dos comportamentos do tráfego DNS, um estudo sobre os dados processados é realizado, sendo depois usados para treinar os modelos de Detecção de Novidades. Os modelos são treinados com dados lícitos recolhidos de multiplas atividades lícitas, como ler as notícias, estudar, e usar redes sociais, em multiplos sistemas operativos e com multiplas configurações. De seguida, os modelos são testados com dados lícitos semelhantes, mas contendo também tráfego de malware bots. Os nossos testes mostram que com modelos de Detecção de Novidades é possível obter taxas de detecção na ordem dos 99%, e de 98% para malware bots que geram pouco tráfego. Este trabalho finaliza com algumas ideas para uma geração de tráfego ilícito mais realista, já que as ferramentas atuais de DNS tunneling são limitadas quando usadas para imitar usos de DNS lícito, e para uma melhor deteção de situações onde malware bots geram pouco tráfego.Mestrado em Engenharia de Computadores e Telemátic

    Deteção de propagação de ameaças e exfiltração de dados em redes empresariais

    Get PDF
    Modern corporations face nowadays multiple threats within their networks. In an era where companies are tightly dependent on information, these threats can seriously compromise the safety and integrity of sensitive data. Unauthorized access and illicit programs comprise a way of penetrating the corporate networks, able to traversing and propagating to other terminals across the private network, in search of confidential data and business secrets. The efficiency of traditional security defenses are being questioned with the number of data breaches occurred nowadays, being essential the development of new active monitoring systems with artificial intelligence capable to achieve almost perfect detection in very short time frames. However, network monitoring and storage of network activity records are restricted and limited by legal laws and privacy strategies, like encryption, aiming to protect the confidentiality of private parties. This dissertation proposes methodologies to infer behavior patterns and disclose anomalies from network traffic analysis, detecting slight variations compared with the normal profile. Bounded by network OSI layers 1 to 4, raw data are modeled in features, representing network observations, and posteriorly, processed by machine learning algorithms to classify network activity. Assuming the inevitability of a network terminal to be compromised, this work comprises two scenarios: a self-spreading force that propagates over internal network and a data exfiltration charge which dispatch confidential info to the public network. Although features and modeling processes have been tested for these two cases, it is a generic operation that can be used in more complex scenarios as well as in different domains. The last chapter describes the proof of concept scenario and how data was generated, along with some evaluation metrics to perceive the model’s performance. The tests manifested promising results, ranging from 96% to 99% for the propagation case and 86% to 97% regarding data exfiltration.Nos dias de hoje, várias organizações enfrentam múltiplas ameaças no interior da sua rede. Numa época onde as empresas dependem cada vez mais da informação, estas ameaças podem compremeter seriamente a segurança e a integridade de dados confidenciais. O acesso não autorizado e o uso de programas ilícitos constituem uma forma de penetrar e ultrapassar as barreiras organizacionais, sendo capazes de propagarem-se para outros terminais presentes no interior da rede privada com o intuito de atingir dados confidenciais e segredos comerciais. A eficiência da segurança oferecida pelos sistemas de defesa tradicionais está a ser posta em causa devido ao elevado número de ataques de divulgação de dados sofridos pelas empresas. Desta forma, o desenvolvimento de novos sistemas de monitorização ativos usando inteligência artificial é crucial na medida de atingir uma deteção mais precisa em curtos períodos de tempo. No entanto, a monitorização e o armazenamento dos registos da atividade da rede são restritos e limitados por questões legais e estratégias de privacidade, como a cifra dos dados, visando proteger a confidencialidade das entidades. Esta dissertação propõe metodologias para inferir padrões de comportamento e revelar anomalias através da análise de tráfego que passa na rede, detetando pequenas variações em comparação com o perfil normal de atividade. Delimitado pelas camadas de rede OSI 1 a 4, os dados em bruto são modelados em features, representando observações de rede e, posteriormente, processados por algoritmos de machine learning para classificar a atividade de rede. Assumindo a inevitabilidade de um terminal ser comprometido, este trabalho compreende dois cenários: um ataque que se auto-propaga sobre a rede interna e uma tentativa de exfiltração de dados que envia informações para a rede pública. Embora os processos de criação de features e de modelação tenham sido testados para estes dois casos, é uma operação genérica que pode ser utilizada em cenários mais complexos, bem como em domínios diferentes. O último capítulo inclui uma prova de conceito e descreve o método de criação dos dados, com a utilização de algumas métricas de avaliação de forma a espelhar a performance do modelo. Os testes mostraram resultados promissores, variando entre 96% e 99% para o caso da propagação e entre 86% e 97% relativamente ao roubo de dados.Mestrado em Engenharia de Computadores e Telemátic

    Enhancing Anomaly Detection Techniques for Emerging Threats

    Get PDF
    Despite the Internet being an apex of human achievement for many years, criminal behaviour and malicious activity are continuing to propagate at an alarming rate. This juxtaposition can be loosely attributed to the myriad of vulnerabilities identified in existing software. Cyber criminals leverage these innovative infection and exploitation techniques to author pervasive malware and propagate devastating attacks. These malicious actors are motivated by the financial or political gain achieved upon successful infiltration into computer systems as the resources held within are often very valuable in nature. With the widespread developments in the Internet of Things (IoT), 5G, and Starlink satellites, unserved areas of the world will experience a pervasive expansion of connected devices to the Internet. Consequently, a barrage of potential new attack vectors and victims are unfolding which requires constant monitoring in order to manage this ever growing problem. Conventional rule-based intrusion detection mechanisms used by network management solutions rely on pre-defined attack signatures and hence are unable to identify new attacks. In parallel, anomaly detection solutions tend to suffer from high false positive rates due to the limited statistical validation of ground truth data, which is used for profiling normal network behaviour. When considering the explosive threat landscape and the expanse of connected devices, current security solutions also face challenges relating to the scale at which attacks need to be monitored and detected. However, recent innovations in Big Data processing have revealed a promising avenue in which scale is addressed through cluster computing and parallel processing. This thesis advances beyond current solutions and leverages the coupling of anomaly detection and Cyber Threat Intelligence (CTI) with parallel processing for the profiling and detection of emerging cyber attacks. This is demonstrated through the design, implementation, and evaluation of Citrus: a novel intrusion detection framework which is adept at tackling emerging threats through the collection and labelling of live attack data by utilising diverse Internet vantage points in order to detect and classify malicious behaviour using graph-based metrics, as well as a range of Machine Learning (ML) algorithms. This research provides innovative contributions to the cyber security field, including the public release of an open flow-based intrusion detection data set. This data set encompasses emerging attack patterns and is supported by a robust ground truth. Furthermore, Citrus advances the current state of the art through a novel ground truth development method. Citrus also enables both near real-time and offline detection of emerging cyber attacks under optimal computational costs. These properties demonstrate that it is a viable and practical solution for next generation network defence and resilience strategies

    Cybersecurity Games: Mathematical Approaches for Cyber Attack and Defense Modeling

    Get PDF
    Cyber-attacks targeting individuals and enterprises have become a predominant part of the computer/information age. Such attacks are becoming more sophisticated and prevalent on a day-to-day basis. The exponential growth of cyber plays and cyber players necessitate the inauguration of new methods and research for better understanding the cyber kill chain, particularly with the rise of advanced and novel malware and the extraordinary growth in the population of Internet residents, especially connected Internet of Things (IoT) devices. Mathematical modeling could be used to represent real-world cyber-attack situations. Such models play a beneficial role when it comes to the secure design and evaluation of systems/infrastructures by providing a better understanding of the threat itself and the attacker\u27s conduct during the lifetime of a cyber attack. Therefore, the main goal of this dissertation is to construct a proper theoretical framework to be able to model and thus evaluate the defensive strategies/technologies\u27 effectiveness from a security standpoint. To this end, we first present a Markov-based general framework to model the interactions between the two famous players of (network) security games, i.e., a system defender and an attacker taking actions to reach its attack objective(s) in the game. We mainly focus on the most significant and tangible aspects of sophisticated cyber attacks: (1) the amount of time it takes for the adversary to accomplish its mission and (2) the success probabilities of fulfilling the attack objective(s) by translating attacker-defender interactions into well-defined games and providing rigorous cryptographic security guarantees for a system given both players\u27 tactics and strategies. We study various attack-defense scenarios, including Moving Target Defense (MTD) strategies, multi-stage attacks, and Advanced Persistent Threats (APT). We provide general theorems about how the probability of a successful adversary defeating a defender’s strategy is related to the amount of time (or any measure of cost) spent by the adversary in such scenarios. We also introduce the notion of learning in cybersecurity games and describe a general game of consequences meaning that each player\u27s chances of making a progressive move in the game depend on its previous actions. Finally, we walk through a malware propagation and botnet construction game in which we investigate the importance of defense systems\u27 learning rates to fight against the self-propagating class of malware such as worms and bots. We introduce a new propagation modeling and containment strategy called the learning-based model and study the containment criterion for the propagation of the malware based on theoretical and simulation analysis

    Achieving cyber resiliency against lateral movement through detection and response

    Get PDF
    Systems and attacks are becoming more complex, and classical cyber security methods are failing to protect and secure those systems. We believe that systems must be built to be resilient to attacks. Cyber resilience is a dynamic protection strategy that aims to stop cyber attacks while maintaining an acceptable level of service. The strategy monitors a system to detect cyber incidents, and dynamically changes the state of the system to learn about the incidents, contain an attack, and recover. Thus, instead of being perfectly protected, a cyber-resilient system survives a cyber incident by containing the attack and recovering while maintaining service. Cyber resiliency has the potential to secure the modern systems that control our critical infrastructure. However, several practical and theoretical challenges hinder the development of cyber-resilient architectures. In particular, an architecture needs to support and make use of a large amount of monitoring; the problem is especially serious for a large network in which hosts send low-level information for fusion. The problem is not only computational; the semantics of the data also creates a challenge. In combining information from multiple sources and across multiple abstractions, we need to realize that the sources are describing different events in the system which are occurring at varying time scales. Moreover, the system is dependent on the integrity of the monitoring data when estimating the state of the system. The estimated state is used to detect malicious activities and to drive responses. The integrity of the monitoring data is critical to making “correct” decisions that are not influenced by the attacker. In addition, choosing an appropriate response to specific attacks requires knowledge of the at- tackers’ behavior, i.e., an attacker model. If the attacker model is wrong, then the responses selected by the mechanism will be ineffective. Finally, the response mechanisms need to be proven effective in maintaining the resilience of the system. Proving such properties is particularly challenging when the systems are highly complex. In this dissertation, we propose a resiliency architecture that uses a model of the system to deploy monitors, estimates the state of the system using monitor data, and selects responses to contain and recover from attacks while maintaining service. Then we describe our design for the essential components of the said resiliency architecture for a multitude of systems including operating systems, hosts, and enterprise net- works, to address lateral movement attacks. Specifically, we have built components that address monitor design, fusion of monitoring data, and response. Our pieces address the challenges that face cyber-resilient architectures. We set out to provide resilience against lateral movement. Lateral movement is a step taken by an attacker to shift his or her position from an initial compromised host into a target host with high value. First, we designed a host-level monitor Kobra that generates different estimations of the state of a host. Kobra combines the various aspects of application behavior into multiple views: (1) a discrete time signal used for anomaly detection, and (2) a host-level process communication graph to correlate events that happen in a network. We use the host correlations to generate chains of network events that correspond to suspicious lateral movement behavior. We use a novel fusion framework that enables us to fuse monitoring events for different sources over a hierarchy. Finally, we respond to lateral movement by changing the topology and healing rates in the network. The changes are enacted by a feedback controller to slow down and stop the spread of the attack. Since our cyber resiliency architecture depends on the integrity of the monitoring data, we propose PowerAlert, an out-of-box integrity checker, to establish the “trustworthiness” of a machine. PowerAlert is resilient to attacker evasion and adaptation. It uses the current drawn by the CPU, measured using an external probe, to confirm that the machine executed the check as expected. To prevent an attacker from evading PowerAlert, we use an optimal initiation strategy, and to resist adaptation, we use randomly generated integrity-checking programs. We pick the optimal initiation strategy by modeling the problem of low-cost integrity checking when an attacker is attempting to evade detection as a continuous-time game called Tireless. The optimal strategy is the Nash equilibrium that optimizes the defender’s cost of checking and utility of detection against an adaptive attacker

    Cyber-storms come from clouds:Security of cloud computing in the IoT era

    Get PDF
    The Internet of Things (IoT) is rapidly changing our society to a world where every “thing” is connected to the Internet, making computing pervasive like never before. This tsunami of connectivity and data collection relies more and more on the Cloud, where data analytics and intelligence actually reside. Cloud computing has indeed revolutionized the way computational resources and services can be used and accessed, implementing the concept of utility computing whose advantages are undeniable for every business. However, despite the benefits in terms of flexibility, economic savings, and support of new services, its widespread adoption is hindered by the security issues arising with its usage. From a security perspective, the technological revolution introduced by IoT and Cloud computing can represent a disaster, as each object might become inherently remotely hackable and, as a consequence, controllable by malicious actors. While the literature mostly focuses on the security of IoT and Cloud computing as separate entities, in this article we provide an up-to-date and well-structured survey of the security issues of cloud computing in the IoT era. We give a clear picture of where security issues occur and what their potential impact is. As a result, we claim that it is not enough to secure IoT devices, as cyber-storms come from Clouds
    corecore