273 research outputs found

    Volumetric Procedural Models for Shape Representation

    Full text link
    This article describes a volumetric approach for procedural shape modeling and a new Procedural Shape Modeling Language (PSML) that facilitates the specification of these models. PSML provides programmers the ability to describe shapes in terms of their 3D elements where each element may be a semantic group of 3D objects, e.g., a brick wall, or an indivisible object, e.g., an individual brick. Modeling shapes in this manner facilitates the creation of models that more closely approximate the organization and structure of their real-world counterparts. As such, users may query these models for volumetric information such as the number, position, orientation and volume of 3D elements which cannot be provided using surface based model-building techniques. PSML also provides a number of new language-specific capabilities that allow for a rich variety of context-sensitive behaviors and post-processing functions. These capabilities include an object-oriented approach for model design, methods for querying the model for component-based information and the ability to access model elements and components to perform Boolean operations on the model parts. PSML is open-source and includes freely available tutorial videos, demonstration code and an integrated development environment to support writing PSML programs

    Amortized Rejection Sampling in Universal Probabilistic Programming

    Full text link
    Existing approaches to amortized inference in probabilistic programs with unbounded loops can produce estimators with infinite variance. An instance of this is importance sampling inference in programs that explicitly include rejection sampling as part of the user-programmed generative procedure. In this paper we develop a new and efficient amortized importance sampling estimator. We prove finite variance of our estimator and empirically demonstrate our method's correctness and efficiency compared to existing alternatives on generative programs containing rejection sampling loops and discuss how to implement our method in a generic probabilistic programming framework

    Inference Networks for Sequential Monte Carlo in Graphical Models

    Get PDF
    Abstract We introduce a new approach for amortizing inference in directed graphical models by learning heuristic approximations to stochastic inverses, designed specifically for use as proposal distributions in sequential Monte Carlo methods. We describe a procedure for constructing and learning a structured neural network which represents an inverse factorization of the graphical model, resulting in a conditional density estimator that takes as input particular values of the observed random variables, and returns an approximation to the distribution of the latent variables. This recognition model can be learned offline, independent from any particular dataset, prior to performing inference. The output of these networks can be used as automatically-learned high-quality proposal distributions to accelerate sequential Monte Carlo across a diverse range of problem settings

    Image-based tree variations

    Get PDF
    The automatic generation of realistic vegetation closely reproducing the appearance of specific plant species is still a challenging topic in computer graphics. In this paper, we present a new approach to generate new tree models from a small collection of frontal RGBA images of trees. The new models are represented either as single billboards (suitable for still image generation in areas such as architecture rendering) or as billboard clouds (providing parallax effects in interactive applications). Key ingredients of our method include the synthesis of new contours through convex combinations of exemplar countours, the automatic segmentation into crown/trunk classes and the transfer of RGBA colour from the exemplar images to the synthetic target. We also describe a fully automatic approach to convert a single tree image into a billboard cloud by extracting superpixels and distributing them inside a silhouette-defined 3D volume. Our algorithm allows for the automatic generation of an arbitrary number of tree variations from minimal input, and thus provides a fast solution to add vegetation variety in outdoor scenes.Peer ReviewedPostprint (author's final draft
    corecore