779 research outputs found

    Controlling iterated jumps of solutions to combinatorial problems

    Get PDF
    Among the Ramsey-type hierarchies, namely, Ramsey's theorem, the free set, the thin set and the rainbow Ramsey theorem, only Ramsey's theorem is known to collapse in reverse mathematics. A promising approach to show the strictness of the hierarchies would be to prove that every computable instance at level n has a low_n solution. In particular, this requires effective control of iterations of the Turing jump. In this paper, we design some variants of Mathias forcing to construct solutions to cohesiveness, the Erdos-Moser theorem and stable Ramsey's theorem for pairs, while controlling their iterated jumps. For this, we define forcing relations which, unlike Mathias forcing, have the same definitional complexity as the formulas they force. This analysis enables us to answer two questions of Wei Wang, namely, whether cohesiveness and the Erdos-Moser theorem admit preservation of the arithmetic hierarchy, and can be seen as a step towards the resolution of the strictness of the Ramsey-type hierarchies.Comment: 32 page

    Open questions about Ramsey-type statements in reverse mathematics

    Get PDF
    Ramsey's theorem states that for any coloring of the n-element subsets of N with finitely many colors, there is an infinite set H such that all n-element subsets of H have the same color. The strength of consequences of Ramsey's theorem has been extensively studied in reverse mathematics and under various reducibilities, namely, computable reducibility and uniform reducibility. Our understanding of the combinatorics of Ramsey's theorem and its consequences has been greatly improved over the past decades. In this paper, we state some questions which naturally arose during this study. The inability to answer those questions reveals some gaps in our understanding of the combinatorics of Ramsey's theorem.Comment: 15 page

    The weakness of the pigeonhole principle under hyperarithmetical reductions

    Full text link
    The infinite pigeonhole principle for 2-partitions (RT21\mathsf{RT}^1_2) asserts the existence, for every set AA, of an infinite subset of AA or of its complement. In this paper, we study the infinite pigeonhole principle from a computability-theoretic viewpoint. We prove in particular that RT21\mathsf{RT}^1_2 admits strong cone avoidance for arithmetical and hyperarithmetical reductions. We also prove the existence, for every Δn0\Delta^0_n set, of an infinite lown{}_n subset of it or its complement. This answers a question of Wang. For this, we design a new notion of forcing which generalizes the first and second-jump control of Cholak, Jockusch and Slaman.Comment: 29 page

    Simheuristic and learnheuristic algorithms for the temporary-facility location and queuing problem during population treatment or testing events

    Get PDF
    Epidemic outbreaks, such as the one generated by the coronavirus disease, have raised the need for more efficient healthcare logistics. One of the challenges that many governments have to face in such scenarios is the deployment of temporary medical facilities across a region with the purpose of providing medical services to their citizens. This work tackles this temporary-facility location and queuing problem with the goals of minimizing costs, the expected completion time, population travel and waiting times. The completion time for a facility depends on the numbers assigned to those facilities as well as stochastic arrival times. This work proposes a learnheuristic algorithm to solve the facility location and population assignment problem. Firstly a machine learning algorithm is trained using data from a queuing model (simulation module). The learnheuristic then constructs solutions using the machine learning algorithm to rapidly evaluate decisions in terms of facility completion and population waiting times. The efficiency and quality of the algorithm is demonstrated by comparison with exact and simulation-only (simheuristic) methodologies. A series of experiments are performed which explore the trade offs between solution cost, completion time, population travel and waiting times.Peer ReviewedPostprint (author's final draft

    Iterative forcing and hyperimmunity in reverse mathematics

    Full text link
    The separation between two theorems in reverse mathematics is usually done by constructing a Turing ideal satisfying a theorem P and avoiding the solutions to a fixed instance of a theorem Q. Lerman, Solomon and Towsner introduced a forcing technique for iterating a computable non-reducibility in order to separate theorems over omega-models. In this paper, we present a modularized version of their framework in terms of preservation of hyperimmunity and show that it is powerful enough to obtain the same separations results as Wang did with his notion of preservation of definitions.Comment: 15 page
    • …
    corecore