114 research outputs found

    Adaptive motor control and learning in a spiking neural network realised on a mixed-signal neuromorphic processor

    Full text link
    Neuromorphic computing is a new paradigm for design of both the computing hardware and algorithms inspired by biological neural networks. The event-based nature and the inherent parallelism make neuromorphic computing a promising paradigm for building efficient neural network based architectures for control of fast and agile robots. In this paper, we present a spiking neural network architecture that uses sensory feedback to control rotational velocity of a robotic vehicle. When the velocity reaches the target value, the mapping from the target velocity of the vehicle to the correct motor command, both represented in the spiking neural network on the neuromorphic device, is autonomously stored on the device using on-chip plastic synaptic weights. We validate the controller using a wheel motor of a miniature mobile vehicle and inertia measurement unit as the sensory feedback and demonstrate online learning of a simple 'inverse model' in a two-layer spiking neural network on the neuromorphic chip. The prototype neuromorphic device that features 256 spiking neurons allows us to realise a simple proof of concept architecture for the purely neuromorphic motor control and learning. The architecture can be easily scaled-up if a larger neuromorphic device is available.Comment: 6+1 pages, 4 figures, will appear in one of the Robotics conference

    Memory and information processing in neuromorphic systems

    Full text link
    A striking difference between brain-inspired neuromorphic processors and current von Neumann processors architectures is the way in which memory and processing is organized. As Information and Communication Technologies continue to address the need for increased computational power through the increase of cores within a digital processor, neuromorphic engineers and scientists can complement this need by building processor architectures where memory is distributed with the processing. In this paper we present a survey of brain-inspired processor architectures that support models of cortical networks and deep neural networks. These architectures range from serial clocked implementations of multi-neuron systems to massively parallel asynchronous ones and from purely digital systems to mixed analog/digital systems which implement more biological-like models of neurons and synapses together with a suite of adaptation and learning mechanisms analogous to the ones found in biological nervous systems. We describe the advantages of the different approaches being pursued and present the challenges that need to be addressed for building artificial neural processing systems that can display the richness of behaviors seen in biological systems.Comment: Submitted to Proceedings of IEEE, review of recently proposed neuromorphic computing platforms and system

    Parallel computing for brain simulation

    Get PDF
    [Abstract] Background: The human brain is the most complex system in the known universe, it is therefore one of the greatest mysteries. It provides human beings with extraordinary abilities. However, until now it has not been understood yet how and why most of these abilities are produced. Aims: For decades, researchers have been trying to make computers reproduce these abilities, focusing on both understanding the nervous system and, on processing data in a more efficient way than before. Their aim is to make computers process information similarly to the brain. Important technological developments and vast multidisciplinary projects have allowed creating the first simulation with a number of neurons similar to that of a human brain. Conclusion: This paper presents an up-to-date review about the main research projects that are trying to simulate and/or emulate the human brain. They employ different types of computational models using parallel computing: digital models, analog models and hybrid models. This review includes the current applications of these works, as well as future trends. It is focused on various works that look for advanced progress in Neuroscience and still others which seek new discoveries in Computer Science (neuromorphic hardware, machine learning techniques). Their most outstanding characteristics are summarized and the latest advances and future plans are presented. In addition, this review points out the importance of considering not only neurons: Computational models of the brain should also include glial cells, given the proven importance of astrocytes in information processing.Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; GRC2014/049Galicia. Consellería de Cultura, Educación e Ordenación Universitaria; R2014/039Instituto de Salud Carlos III; PI13/0028

    On Neuromechanical Approaches for the Study of Biological Grasp and Manipulation

    Full text link
    Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas

    Estudio e implementación de algoritmos de fusión sensorial para sensores pulsantes y clásicos con protocolo AER de comunicación y aplicación en sistemas robóticos neuroinspirados

    Get PDF
    The objective of this thesis is to analyze, design, simulate and implement a model that follows the principles of the human nervous system when a reaching movement is made. The background of the thesis is the neuromorphic engineering field. This term was first coined in the late eighties by Caver Mead. Its main objective is to develop hardware devices, based on the neuron as the basic unit, to develop a range of tasks such as: decision making, image processing, learning, etc. During the last twenty years, this field of research has gathered a large number of researchers around the world. Spike-based sensors and devices that perform spike processing tasks have been developed. A neuro-inspired controller model based on the classic algorithms VITE and FLETE is proposed in this thesis (specifically, the two algorithms presented are: the VITE model which generates a non-planned trajectory and the FLETE model to generate the forces needed to hold a position reached). The hardware platforms used to implement them are a FPGA and a VLSI multi-chip setup. Then, considering how a reaching movement is performed by humans, these algorithms are translated under the constraints of each hardware device. The constraints are: spike-processing blocks described in VHDL for the FPGA and neurons LIF for the VLSI chips. To reach a successful translation of VITE algorithm under the constraints of the FPGA, a new spike-processing block is designed, simulated and implemented: GO Block. On the other hand, to perform an accurate translation of the VITE algorithm under VLSI requirements, the recent biological advances are studied. Then, a model which implements the co-activation of NMDA channels (this activity is related to the activity detected in the basal ganglia short time before a movement is made) is modeled, simulated and implemented. Once the model is defined for both platforms, it is simulated using the Matlab Simulink environment for FPGA and Brian simulator for VLSI chips. The hardware results of the algorithms translated are presented. The open-loop spike-based VITE (on both platforms) and closed-loop (FPGA) applied and connected to a robotic platform using the AER bus show an excellent behaviour in terms of power and resources consumption. They show also an accurate and precise functioning for reaching and tracking movements when the target is supplied by an AER retina or jAER. Thus, a full neuro-inspired architecture is implemented: from the sensor (retina) to the end effector (robot) going through the neuro-inspired controller designed. An alternative for the SVITE platform is also presented. A random element is added to the neuron model to include variability in the neural response. The results obtained for this variant, show a similar behaviour if a comparison with the deterministic algorithms is made. The possibility to include this pseudo-random controller in noise and / or random environment is demonstrated. Finally, this thesis claims that PFM is the most suitable modulation to drive motors in a neuromorphic hardware environment. It allows supplying the events directly to the motors. Furthermore, it is achieved that the system is not affected by spurious or noisy events. The novel results achieved with the VLSI multi-chip setup, this is the first attempt to control a robotic platform using sub-thresold low-power neurons, intended to set the basis for designing neuro-inspired controllers

    On neuromechanical approaches for the study of biological and robotic grasp and manipulation

    Get PDF
    abstract: Biological and robotic grasp and manipulation are undeniably similar at the level of mechanical task performance. However, their underlying fundamental biological vs. engineering mechanisms are, by definition, dramatically different and can even be antithetical. Even our approach to each is diametrically opposite: inductive science for the study of biological systems vs. engineering synthesis for the design and construction of robotic systems. The past 20 years have seen several conceptual advances in both fields and the quest to unify them. Chief among them is the reluctant recognition that their underlying fundamental mechanisms may actually share limited common ground, while exhibiting many fundamental differences. This recognition is particularly liberating because it allows us to resolve and move beyond multiple paradoxes and contradictions that arose from the initial reasonable assumption of a large common ground. Here, we begin by introducing the perspective of neuromechanics, which emphasizes that real-world behavior emerges from the intimate interactions among the physical structure of the system, the mechanical requirements of a task, the feasible neural control actions to produce it, and the ability of the neuromuscular system to adapt through interactions with the environment. This allows us to articulate a succinct overview of a few salient conceptual paradoxes and contradictions regarding under-determined vs. over-determined mechanics, under- vs. over-actuated control, prescribed vs. emergent function, learning vs. implementation vs. adaptation, prescriptive vs. descriptive synergies, and optimal vs. habitual performance. We conclude by presenting open questions and suggesting directions for future research. We hope this frank and open-minded assessment of the state-of-the-art will encourage and guide these communities to continue to interact and make progress in these important areas at the interface of neuromechanics, neuroscience, rehabilitation and robotics.The electronic version of this article is the complete one and can be found online at: https://jneuroengrehab.biomedcentral.com/articles/10.1186/s12984-017-0305-
    corecore