521 research outputs found

    Modeling infectious disease dynamics in the complex landscape of global health.

    Get PDF
    Despite some notable successes in the control of infectious diseases, transmissible pathogens still pose an enormous threat to human and animal health. The ecological and evolutionary dynamics of infections play out on a wide range of interconnected temporal, organizational, and spatial scales, which span hours to months, cells to ecosystems, and local to global spread. Moreover, some pathogens are directly transmitted between individuals of a single species, whereas others circulate among multiple hosts, need arthropod vectors, or can survive in environmental reservoirs. Many factors, including increasing antimicrobial resistance, increased human connectivity and changeable human behavior, elevate prevention and control from matters of national policy to international challenge. In the face of this complexity, mathematical models offer valuable tools for synthesizing information to understand epidemiological patterns, and for developing quantitative evidence for decision-making in global health

    Model or meal? Farm animal populations as models for infectious diseases of humans

    Get PDF
    In recent decades, theory addressing the processes that underlie the dynamics of infectious diseases has progressed considerably. Unfortunately, the availability of empirical data to evaluate these theories has not grown at the same pace. Although laboratory animals have been widely used as models at the organism level, they have been less appropriate for addressing issues at the population level. However, farm animal populations can provide empirical models to study infectious diseases at the population level

    Models of Hospital Acquired Infection

    Get PDF

    Optimizing Treatment Regimes to Hinder Antiviral Resistance in Influenza across Time Scales

    Get PDF
    abstract: The large-scale use of antivirals during influenza pandemics poses a significant selection pressure for drug-resistant pathogens to emerge and spread in a population. This requires treatment strategies to minimize total infections as well as the emergence of resistance. Here we propose a mathematical model in which individuals infected with wild-type influenza, if treated, can develop de novo resistance and further spread the resistant pathogen. Our main purpose is to explore the impact of two important factors influencing treatment effectiveness: i) the relative transmissibility of the drug-resistant strain to wild-type, and ii) the frequency of de novo resistance. For the endemic scenario, we find a condition between these two parameters that indicates whether treatment regimes will be most beneficial at intermediate or more extreme values (e.g., the fraction of infected that are treated). Moreover, we present analytical expressions for effective treatment regimes and provide evidence of its applicability across a range of modeling scenarios: endemic behavior with deterministic homogeneous mixing, and single-epidemic behavior with deterministic homogeneous mixing and stochastic heterogeneous mixing. Therefore, our results provide insights for the control of drug-resistance in influenza across time scales.The article is published at http://journals.plos.org/plosone/article?id=10.1371/journal.pone.005952

    The effectiveness of policies to control a human influenza pandemic : a literature review

    Get PDF
    The studies reviewed in this paper indicate that with adequate preparedness planning and execution it is possible to contain pandemic influenza outbreaks where they occur, for viral strains of moderate infectiousness. For viral strains of higher infectiousness, containment may be difficult, but it may be possible to mitigate the effects of the spread of pandemic influenza within a country and/or internationally with a combination of policies suited to the origins and nature of the initial outbreak. These results indicate the likelihood of containment success in'frontline risk'countries, given specific resource availability and level of infectiousness; as well as mitigation success in'secondary'risk countries, given the assumption of inevitable international transmission through air travel networks. However, from the analysis of the modeling results on interventions in the U.S. and U.K. after a global pandemic starts, there is a basis for arguing that the emphasis in the secondary risk countries could shift from mitigation towards containment. This follows since a mitigation-focused strategy in such developed countries presupposes that initial outbreak containment in these countries will necessarily fail. This is paradoxical if containment success at similar infectiousness of the virus is likely in developing countries with lower public health resources, based on results using similar modeling methodologies. Such a shift in emphasis could have major implications for global risk management for diseases of international concern such as pandemic influenza or a SARS-like disease.Avian Flu,Disease Control&Prevention,Health Monitoring&Evaluation,Population Policies,HIV AIDS

    Modelling and controlling infectious diseases

    Get PDF
    The financial support by IDRC has made it much easier to put together network activities involving scientists in both countries, a special example is the large presence of the Chinese students in the 2012 Summer School on Mathematics for Public Health the Canadian group organized in Edmonton in May of 2012.Infectious disease control is a major challenge in China due to China’s fast growing economy, changing social networks and evolving health service infrastructures. The success of disease control in China has a profound impact beyond its borders. In support of better disease control, this five year research program was designed to enhance China’s national capacity for analyzing, modeling and predicting transmission dynamics of infectious diseases through joint research, training young scientists, and building collaborative relationships. This successful program was led by the National Center for AIDS/STD Control and Prevention (Chinese Centre for Disease Control and Prevention, China) and the Centre for Disease Modeling (York University, Canada), and involved a number of Canadian and Chinese universities in various areas of infectious disease modelling and control. The bilateral collaboration also trained numerous highly qualified personnel and built a network for sustaining collaboration. This capacity building was facilitated by joint projects and bilateral annual meetings in major cities in China and Canada. The research activities on modeling major public health threats of infectious diseases focused on major diseases in China and/or issues of global public health concern including HIV transmission and prevention among high risk population, HIV treatment and drug resistance, influenza, schistosomiasis, mutation and stemma of SIV and HIV, latent and active tuberculosis infection, HBV control and vaccination. The outputs of the project were reported through peer-reviewed publications and modelling– based and science-informed public policy recommendations

    2013 Conference Abstracts: Annual Undergraduate Research Conference at the Interface of Biology and Mathematics

    Get PDF
    URC Schedule and Abstract Book for the Fifth Annual Undergraduate Research Conference at the Interface of Biology and Mathematics Date: November 16-17, 2013Plenary Speaker: Mariel Vazquez, Associate Professor of Mathematics at San Francisco State UniversityFeatured Speaker: Andrew Liebhold, Research Entomologist for the USDA Forest Servic

    Simulation modeling of zoonotic diseases between swine and human populations for informing policy decisions

    No full text
    Approximately 60% of human pathogens and emerging infectious diseases are zoonotic. Simulation models are increasingly being used to investigate the spread of diseases, evaluate intervention strategies and guide the decisions of policy makers. In this thesis a systematic review of modeling methods and approaches used for zoonotic influenza in animals and humans was conducted, and knowledge gaps were identified. Furthermore, the disease spread and intervention parameters used in these studies were summarized for ready reference in future work. Building on this review work, the research presented in this thesis evaluated the effects of transmissibility of the pandemic H1N1 2009 (pH1N1) virus at the swine- human interface and the control strategies against its spread in swine and human populations as a case study for zoonotic disease modeling. The feasibility of North American Animal Disease Spread Model (NAADSM) for modeling directly transmitted zoonoses was also assessed. Population data based on swine herds and households (categorized as rural households with or without swine workers, and urban households without swine workers) of a county in Ontario, Canada was used. The swine workers served as a bridging population for the spread of the virus between swine herds and households. Scenarios based on the combinations of the transmissibility of the virus (low (L), medium (M), and high (H)) from swine-to-human and human-to-swine (LL, ML, HL, MM, HM, LL), and targeted vaccination of swine worker households (0% to 60%) were evaluated. The results showed that lowering the influenza transmissibility at the interface to low level and providing higher vaccine coverage (60%) had significant beneficial effects on all outcome measures. However, these measures had little or negligible impact on the total number of rural and urban households infected. A set of models evaluating the combination of control strategies indicated that a moderate speed of the detection (within 5 to 10 days of the first infection), combined with the quarantine of detected units alone, contained the outbreak within the swine population in most simulations. However, a zone-based quarantine strategy was more effective when the detection was delayed until around three weeks after initial infection. Ring vaccination had no added beneficial effect. This work suggested that NAADSM can be used for modeling the directly transmitted zoonotic diseases under similar simplifying assumptions adopted in these studies. However, this needs to be evaluated further with more accurate parameters and influenza outbreak data. To fill in some of the gaps identified in the review study, network analyses of swine shipments among farms, and between farms and abattoirs were conducted. This provided network metrics and parameters necessary for disease modeling and risk-based disease management in swine in Ontario for the first time. Finally, agent-based network models assessing the spread and control of pH1N1 in swine established the importance of explicitly incorporating appropriate contact network structures into such models to increase their validity. It also demonstrated the benefits of targeted control strategies against highly connected farms. In conclusion, the modeling tools developed in this thesis can assist decision makers in preparedness and response of outbreaks of infectious diseases as more information become available for the parameterization of models
    corecore