1,718 research outputs found

    Brain-CAVE Interface Based on Steady-State Visual Evoked Potential

    Get PDF

    A Utility Framework for Selecting Immersive Interactive Capability and Technology for Virtual Laboratories

    Get PDF
    There has been an increase in the use of virtual reality (VR) technology in the education community since VR is emerging as a potent educational tool that offers students with a rich source of educational material and makes learning exciting and interactive. With a rise of popularity and market expansion in VR technology in the past few years, a variety of consumer VR electronics have boosted educators and researchers’ interest in using these devices for practicing engineering and science laboratory experiments. However, little is known about how such devices may be well-suited for active learning in a laboratory environment. This research aims to address this gap by formulating a utility framework to help educators and decision-makers efficiently select a type of VR device that matches with their design and capability requirements for their virtual laboratory blueprint. Furthermore, a framework use case is demonstrated by not only surveying five types of VR devices ranging from low-immersive to full-immersive along with their capabilities (i.e., hardware specifications, cost, and availability) but also considering the interaction techniques in each VR device based on the desired laboratory task. To validate the framework, a research study is carried out to compare these five VR devices and investigate which device can provide an overall best-fit for a 3D virtual laboratory content that we implemented based on the interaction level, usability and performance effectiveness

    Presence 2005: the eighth annual international workshop on presence, 21-23 September, 2005 University College London (Conference proceedings)

    Get PDF
    OVERVIEW (taken from the CALL FOR PAPERS) Academics and practitioners with an interest in the concept of (tele)presence are invited to submit their work for presentation at PRESENCE 2005 at University College London in London, England, September 21-23, 2005. The eighth in a series of highly successful international workshops, PRESENCE 2005 will provide an open discussion forum to share ideas regarding concepts and theories, measurement techniques, technology, and applications related to presence, the psychological state or subjective perception in which a person fails to accurately and completely acknowledge the role of technology in an experience, including the sense of 'being there' experienced by users of advanced media such as virtual reality. The concept of presence in virtual environments has been around for at least 15 years, and the earlier idea of telepresence at least since Minsky's seminal paper in 1980. Recently there has been a burst of funded research activity in this area for the first time with the European FET Presence Research initiative. What do we really know about presence and its determinants? How can presence be successfully delivered with today's technology? This conference invites papers that are based on empirical results from studies of presence and related issues and/or which contribute to the technology for the delivery of presence. Papers that make substantial advances in theoretical understanding of presence are also welcome. The interest is not solely in virtual environments but in mixed reality environments. Submissions will be reviewed more rigorously than in previous conferences. High quality papers are therefore sought which make substantial contributions to the field. Approximately 20 papers will be selected for two successive special issues for the journal Presence: Teleoperators and Virtual Environments. PRESENCE 2005 takes place in London and is hosted by University College London. The conference is organized by ISPR, the International Society for Presence Research and is supported by the European Commission's FET Presence Research Initiative through the Presencia and IST OMNIPRES projects and by University College London

    The matrix revisited: A critical assessment of virtual reality technologies for modeling, simulation, and training

    Get PDF
    A convergence of affordable hardware, current events, and decades of research have advanced virtual reality (VR) from the research lab into the commercial marketplace. Since its inception in the 1960s, and over the next three decades, the technology was portrayed as a rarely used, high-end novelty for special applications. Despite the high cost, applications have expanded into defense, education, manufacturing, and medicine. The promise of VR for entertainment arose in the early 1990\u27s and by 2016 several consumer VR platforms were released. With VR now accessible in the home and the isolationist lifestyle adopted due to the COVID-19 global pandemic, VR is now viewed as a potential tool to enhance remote education. Drawing upon over 17 years of experience across numerous VR applications, this dissertation examines the optimal use of VR technologies in the areas of visualization, simulation, training, education, art, and entertainment. It will be demonstrated that VR is well suited for education and training applications, with modest advantages in simulation. Using this context, the case is made that VR can play a pivotal role in the future of education and training in a globally connected world

    Effects of P300-based BCI use on reported presence in a virtual environment

    Get PDF
    Brain-computer interfaces (BCIs) are becoming more and more popular as an input device for virtual worlds and computer games. Depending on their function, a major drawback is the mental workload associated with their use and there is significant effort and training required to effectively control them. In this paper, we present two studies assessing how mental workload of a P300-based BCI affects participants" reported sense of presence in a virtual environment (VE). In the first study, we employ a BCI exploiting the P300 event-related potential (ERP) that allows control of over 200 items in a virtual apartment. In the second study, the BCI is replaced by a gaze-based selection method coupled with wand navigation. In both studies, overall performance is measured and individual presence scores are assessed by means of a short questionnaire. The results suggest that there is no immediate benefit for visualizing events in the VE triggered by the BCI and that no learning about the layout of the virtual space takes place. In order to alleviate this, we propose that future P300-based BCIs in VR are set up so as require users to make some inference about the virtual space so that they become aware of it,which is likely to lead to higher reported presence

    FACING EXPERIENCE: A PAINTER’S CANVAS IN VIRTUAL REALITY

    Get PDF
    Full version unavailable due to 3rd party copyright restrictions.This research investigates how shifts in perception might be brought about through the development of visual imagery created by the use of virtual environment technology. Through a discussion of historical uses of immersion in art, this thesis will explore how immersion functions and why immersion has been a goal for artists throughout history. It begins with a discussion of ancient cave drawings and the relevance of Plato’s Allegory of the Cave. Next it examines the biological origins of “making special.” The research will discuss how this concept, combined with the ideas of “action” and “reaction,” has reinforced the view that art is fundamentally experiential rather than static. The research emphasizes how present-day virtual environment art, in providing a space that engages visitors in computer graphics, expands on previous immersive artistic practices. The thesis examines the technical context in which the research occurs by briefly describing the use of computer science technologies, the fundamentals of visual arts practices, and the importance of aesthetics in new media and provides a description of my artistic practice. The aim is to investigate how combining these approaches can enhance virtual environments as artworks. The computer science of virtual environments includes both hardware and software programming. The resultant virtual environment experiences are technologically dependent on the types of visual displays being used, including screens and monitors, and their subsequent viewing affordances. Virtual environments fill the field of view and can be experienced with a head mounted display (HMD) or a large screen display. The sense of immersion gained through the experience depends on how tracking devices and related peripheral devices are used to facilitate interaction. The thesis discusses visual arts practices with a focus on how illusions shift our cognition and perception in the visual modalities. This discussion includes how perceptual thinking is the foundation of art experiences, how analogies are the foundation of cognitive experiences and how the two intertwine in art experiences for virtual environments. An examination of the aesthetic strategies used by artists and new media critics are presented to discuss new media art. This thesis investigates the visual elements used in virtual environments and prescribes strategies for creating art for virtual environments. Methods constituting a unique virtual environment practice that focuses on visual analogies are discussed. The artistic practice that is discussed as the basis for this research also concentrates on experiential moments and shifts in perception and cognition and references Douglas Hofstadter, Rudolf Arnheim and John Dewey. iv Virtual environments provide for experiences in which the imagery generated updates in real time. Following an analysis of existing artwork and critical writing relative to the field, the process of inquiry has required the creation of artworks that involve tracking systems, projection displays, sound work, and an understanding of the importance of the visitor. In practice, the research has shown that the visitor should be seen as an interlocutor, interacting from a first-person perspective with virtual environment events, where avatars or other instrumental intermediaries, such as guns, vehicles, or menu systems, do not to occlude the view. The aesthetic outcomes of this research are the result of combining visual analogies, real time interactive animation, and operatic performance in immersive space. The environments designed in this research were informed initially by paintings created with imagery generated in a hypnopompic state or during the moments of transitioning from sleeping to waking. The drawings often emphasize emotional moments as caricatures and/or elements of the face as seen from a number of perspectives simultaneously, in the way of some cartoons, primitive artwork or Cubist imagery. In the imagery, the faces indicate situations, emotions and confrontations which can offer moments of humour and reflective exploration. At times, the faces usurp the space and stand in representation as both face and figure. The power of the placement of the caricatures in the paintings become apparent as the imagery stages the expressive moment. The placement of faces sets the scene, establishes relationships and promotes the honesty and emotions that develop over time as the paintings are scrutinized. The development process of creating virtual environment imagery starts with hand drawn sketches of characters, develops further as paintings on “digital canvas”, are built as animated, three-dimensional models and finally incorporated into a virtual environment. The imagery is generated while drawing, typically with paper and pencil, in a stream of consciousness during the hypnopompic state. This method became an aesthetic strategy for producing a snappy straightforward sketch. The sketches are explored further as they are worked up as paintings. During the painting process, the figures become fleshed out and their placement on the page, in essence brings them to life. These characters inhabit a world that I explore even further by building them into three dimensional models and placing them in computer generated virtual environments. The methodology of developing and placing the faces/figures became an operational strategy for building virtual environments. In order to open up the range of art virtual environments, and develop operational strategies for visitors’ experience, the characters and their facial features are used as navigational strategies, signposts and methods of wayfinding in order to sustain a stream of consciousness type of navigation. Faces and characters were designed to represent those intimate moments of self-reflection and confrontation that occur daily within ourselves and with others. They sought to reflect moments of wonderment, hurt, curiosity and humour that could subsequently be relinquished for more practical or purposeful endeavours. They were intended to create conditions in which visitors might reflect upon their emotional state, v enabling their understanding and trust of their personal space, in which decisions are made and the nature of world is determined. In order to extend the split-second, frozen moment of recognition that a painting affords, the caricatures and their scenes are given new dimensions as they become characters in a performative virtual reality. Emotables, distinct from avatars, are characters confronting visitors in the virtual environment to engage them in an interactive, stream of consciousness, non-linear dialogue. Visitors are also situated with a role in a virtual world, where they were required to adapt to the language of the environment in order to progress through the dynamics of a drama. The research showed that imagery created in a context of whimsy and fantasy could bring ontological meaning and aesthetic experience into the interactive environment, such that emotables or facially expressive computer graphic characters could be seen as another brushstroke in painting a world of virtual reality

    Real Virtuality: A Code of Ethical Conduct. Recommendations for Good Scientific Practice and the Consumers of VR-Technology

    Get PDF
    The goal of this article is to present a first list of ethical concerns that may arise from research and personal use of virtual reality (VR) and related technology, and to offer concrete recommendations for minimizing those risks. Many of the recommendations call for focused research initiatives. In the first part of the article, we discuss the relevant evidence from psychology that motivates our concerns. In Section “Plasticity in the Human Mind,” we cover some of the main results suggesting that one’s environment can influence one’s psychological states, as well as recent work on inducing illusions of embodiment. Then, in Section “Illusions of Embodiment and Their Lasting Effect,” we go on to discuss recent evidence indicating that immersion in VR can have psychological effects that last after leaving the virtual environment. In the second part of the article, we turn to the risks and recommendations. We begin, in Section “The Research Ethics of VR,” with the research ethics of VR, covering six main topics: the limits of experimental environments, informed consent, clinical risks, dual-use, online research, and a general point about the limitations of a code of conduct for research. Then, in Section “Risks for Individuals and Society,” we turn to the risks of VR for the general public, covering four main topics: long-term immersion, neglect of the social and physical environment, risky content, and privacy. We offer concrete recommendations for each of these 10 topics, summarized in Table 1

    Spatial cognition in virtual environments

    Get PDF
    Since the last decades of the past century, Virtual Reality (VR) has been developed also as a methodology in research, besides a set of helpful applications in medical field (trainings for surgeons, but also rehabilitation tools). In science, there is still no agreement if the use of this technology in research on cognitive processes allows us to generalize results found in a Virtual Environment (VE) to the human behavior or cognition in the real world. This happens because of a series of differences found in basic perceptual processes (for example, depth perception) suggest a big difference in visual environmental representation capabilities of Virtual scenarios. On the other side, in literature quite a lot of studies can be found, which give a proof of VEs reliability in more than one field (trainings and rehabilitation, but also in some research paradigms). The main aim of this thesis is to investigate if, and in which cases, these two different views can be integrated and shed a new light and insights on the use of VR in research. Through the many experiments conducted in the "Virtual Development and Training Center" of the Fraunhofer Institute in Magdeburg, we addressed both low-level spatial processes (within an "evaluation of distances paradigm") and high-level spatial cognition (using a navigation and visuospatial planning task, called "3D Maps"), trying to address, at the same time, also practical problems as, for example, the use of stereoscopy in VEs or the problem of "Simulator Sickness" during navigation in immersive VEs. The results obtained with our research fill some gaps in literature about spatial cognition in VR and allow us to suggest that the use of VEs in research is quite reliable, mainly if the investigated processes are from the higher level of complexity. In this case, in fact, human brain "adapts" pretty well even to a "new" reality like the one offered by the VR, providing of course a familiarization period and the possibility to interact with the environment; the behavior will then be “like if” the environment was real: what is strongly lacking, at the moment, is the possibility to give a completely multisensorial experience, which is a very important issue in order to get the best from this kind of “visualization” of an artificial world. From a low-level point of view, we can confirm what already found in literature, that there are some basic differences in how our visual system perceives important spatial cues as depth and relationships between objects, and, therefore, we cannot talk about "similar environments" talking about VR and reality. The idea that VR is a "different" reality, offering potentially unlimited possibilities of use, even overcoming some physical limits of the real world, in which this "new" reality can be acquired by our cognitive system just by interacting with it, is therefore discussed in the conclusions of this work
    • …
    corecore