2,186 research outputs found

    BCI-Based Navigation in Virtual and Real Environments

    Get PDF
    A Brain-Computer Interface (BCI) is a system that enables people to control an external device with their brain activity, without the need of any muscular activity. Researchers in the BCI field aim to develop applications to improve the quality of life of severely disabled patients, for whom a BCI can be a useful channel for interaction with their environment. Some of these systems are intended to control a mobile device (e. g. a wheelchair). Virtual Reality is a powerful tool that can provide the subjects with an opportunity to train and to test different applications in a safe environment. This technical review will focus on systems aimed at navigation, both in virtual and real environments.This work was partially supported by the Innovation, Science and Enterprise Council of the Junta de Andalucía (Spain), project P07-TIC-03310, the Spanish Ministry of Science and Innovation, project TEC 2011-26395 and by the European fund ERDF

    Combining brain-computer interfaces and assistive technologies: state-of-the-art and challenges

    Get PDF
    In recent years, new research has brought the field of EEG-based Brain-Computer Interfacing (BCI) out of its infancy and into a phase of relative maturity through many demonstrated prototypes such as brain-controlled wheelchairs, keyboards, and computer games. With this proof-of-concept phase in the past, the time is now ripe to focus on the development of practical BCI technologies that can be brought out of the lab and into real-world applications. In particular, we focus on the prospect of improving the lives of countless disabled individuals through a combination of BCI technology with existing assistive technologies (AT). In pursuit of more practical BCIs for use outside of the lab, in this paper, we identify four application areas where disabled individuals could greatly benefit from advancements in BCI technology, namely,“Communication and Control”, “Motor Substitution”, “Entertainment”, and “Motor Recovery”. We review the current state of the art and possible future developments, while discussing the main research issues in these four areas. In particular, we expect the most progress in the development of technologies such as hybrid BCI architectures, user-machine adaptation algorithms, the exploitation of users’ mental states for BCI reliability and confidence measures, the incorporation of principles in human-computer interaction (HCI) to improve BCI usability, and the development of novel BCI technology including better EEG devices

    Cross-Platform Implementation of an SSVEP-Based BCI for the Control of a 6-DOF Robotic Arm

    Full text link
    [EN] Robotics has been successfully applied in the design of collaborative robots for assistance to people with motor disabilities. However, man-machine interaction is difficult for those who suffer severe motor disabilities. The aim of this study was to test the feasibility of a low-cost robotic arm control system with an EEG-based brain-computer interface (BCI). The BCI system relays on the Steady State Visually Evoked Potentials (SSVEP) paradigm. A cross-platform application was obtained in C++. This C++ platform, together with the open-source software Openvibe was used to control a Staubli robot arm model TX60. Communication between Openvibe and the robot was carried out through the Virtual Reality Peripheral Network (VRPN) protocol. EEG signals were acquired with the 8-channel Enobio amplifier from Neuroelectrics. For the processing of the EEG signals, Common Spatial Pattern (CSP) filters and a Linear Discriminant Analysis classifier (LDA) were used. Five healthy subjects tried the BCI. This work allowed the communication and integration of a well-known BCI development platform such as Openvibe with the specific control software of a robot arm such as Staubli TX60 using the VRPN protocol. It can be concluded from this study that it is possible to control the robotic arm with an SSVEP-based BCI with a reduced number of dry electrodes to facilitate the use of the system.Funding for open access charge: Universitat Politecnica de Valencia.Quiles Cucarella, E.; Dadone, J.; Chio, N.; García Moreno, E. (2022). Cross-Platform Implementation of an SSVEP-Based BCI for the Control of a 6-DOF Robotic Arm. Sensors. 22(13):1-26. https://doi.org/10.3390/s22135000126221

    Review of real brain-controlled wheelchairs

    Get PDF
    This paper presents a review of the state of the art regarding wheelchairs driven by a brain-computer interface (BCI). Using a brain-controlled wheelchair (BCW), disabled users could handle a wheelchair through their brain activity, granting autonomy to move through an experimental environment. A classification is established, based on the characteristics of the BCW, such as the type of electroencephalographic (EEG) signal used, the navigation system employed by the wheelchair, the task for the participants, or the metrics used to evaluate the performance. Furthermore, these factors are compared according to the type of signal used, in order to clarify the differences among them. Finally, the trend of current research in this field is discussed, as well as the challenges that should be solved in the future

    Recent and upcoming BCI progress: overview, analysis, and recommendations

    Get PDF
    Brain–computer interfaces (BCIs) are finally moving out of the laboratory and beginning to gain acceptance in real-world situations. As BCIs gain attention with broader groups of users, including persons with different disabilities and healthy users, numerous practical questions gain importance. What are the most practical ways to detect and analyze brain activity in field settings? Which devices and applications are most useful for different people? How can we make BCIs more natural and sensitive, and how can BCI technologies improve usability? What are some general trends and issues, such as combining different BCIs or assessing and comparing performance? This book chapter provides an overview of the different sections of this book, providing a summary of how authors address these and other questions. We also present some predictions and recommendations that ensue from our experience from discussing these and other issues with our authors and other researchers and developers within the BCI community. We conclude that, although some directions are hard to predict, the field is definitely growing and changing rapidly, and will continue doing so in the next several years

    Control a Robot via VEP Using Emotiv EPOC

    Get PDF
    Antud töö kirjeldab visuaalse stiimuliga esilekutsutud potentsiaalidel põhinevat aju ning arvuti vahelist liidest (AAL), mis loodi antud töö praktilise osana. AALi saab kasutada aju ja seadme vahelise otsese suhtluskanali loomiseks, mis tähendab, et seadmega suhtlemiseks pole vaja nuppe vajutada, piisab vaid visuaalsete stiimulite vaatamisest. Efektiivne AAL võimaldaks raske puudega isikutel näiteks elektroonilist ratastooli juhtida. Antud töö osana loodud AAL kasutab tuntud kanoonilise korrelatsiooni- ja võimsusspektri analüüsi meetodeid ning uuendusena kombineerib need kaks meetodit üheks teineteist täiendavaks meetodiks. Kahe meetodi kombinatsioon muudab AALi täpsemaks. AALi testiti antud töös vaid pealiskaudselt ning tulemused on järgnevad: ühe käsu edastamise aeg 2,61 s, täpsus 85,81% ning informatsiooni edastamise kiirus 27,73 bitt/min. Antud AAL on avatud lähtekoodiga, kirjutatud Python 2.7 programmeerimiskeeles, sisaldab graafilist kasutajaliidest ning kasutab aju tegevuse mõõtmiseks elektroensefalograafia (EEG) seadet Emotiv EPOC. AALi kasutamiseks on vaja ainult arvutit ja Emotiv EPOC seadet. Koodi muutes on võimalik kasutada ka teisi EEG seadmeid.This thesis describes an SSVEP-based BCI implemented as a practical part of this work. One possible usage of a BCI that efficiently implements a communication channel between the brain and an external device would be to help severely disabled people to control devices that currently require pushing buttons, for example an electric wheelchair. The BCI implemented as a part of this thesis uses widely known PSDA and CCA feature extraction methods and introduces a new way to combine these methods. Combining different methods improves the performance of a BCI. The application was tested only superficially and the following results were obtained: 2.61 s target detection time, 85.81% accuracy and 27.73 bits/min ITR. The implemented BCI is open-source, written in Python 2.7, has graphical user interface and uses inexpensive EEG device called Emotiv EPOC. The BCI requires only a computer and Emotiv EPOC, no additional hardware is needed. Different EEG devices could be used after modifying the code
    corecore