266 research outputs found

    Traffic Network Control from Temporal Logic Specifications

    Get PDF
    We propose a framework for generating a signal control policy for a traffic network of signalized intersections to accomplish control objectives expressible using linear temporal logic. By applying techniques from model checking and formal methods, we obtain a correct-by-construction controller that is guaranteed to satisfy complex specifications. To apply these tools, we identify and exploit structural properties particular to traffic networks that allow for efficient computation of a finite state abstraction. In particular, traffic networks exhibit a componentwise monotonicity property which allows reach set computations that scale linearly with the dimension of the continuous state space

    Doctor of Philosophy

    Get PDF
    dissertationThe interest in multimodal transportation improvements is increasing in cities across the U.S. Investing in multimodal infrastructure benefits the portion of urban population that is unable to drive due to a variety of reasons such as personal preference, age, and affordability. It is also well known that active transportation such as walking, biking, and taking transit, can improve public health due to increased physical activity, and reduce traffic congestion by reducing the average person's delay. While improved multimodal infrastructure and accessibility attracts new users, it can possibly increase their exposure to risk from crashes. In urban areas where the "safety in numbers phenomenon" does not exist, nonmotorized user vulnerability becomes a predominant risk factor when they are involved in a crash, even at lower vehicle speeds. This dissertation aims to explore the factors that are associated with safety outcomes in urban multimodal transportation systems, and develop methods that can be used to estimate safety effects of multimodal infrastructure and accessibility improvements. Using Chicago as a case study, a comprehensive dataset is developed that significantly contributes to the existing literature by including socio-economic, land use, road network, travel demand, and crash data. Area-wide analysis on the census tract level provides a broader perspective about safety issues that multimodal users encounter in cities. The characteristics of a multimodal transportation system are expressed through the presence of multimodal infrastructure, street connectivity and network completeness, and accessibility to destinations for multimodal users. A set of statistical areal safety models (SASM) based on both frequentist and Bayesian statistical inference is applied to estimate the factors that are associated with total and severe vehicular, pedestrian, and bicyclist crashes in urban multimodal transportation systems. The results show that the current safety evaluation methods need to acknowledge the complexity of multimodal transportation systems through the inclusion of diverse factors that may influence safety outcomes, particularly for more vulnerable users. The methods developed in this research can further be used to expand the current practice of evaluating multimodal transportation safety, and planning for city-wide investments in multimodal infrastructure and improved accessibility, while being able to estimate the expected safety outcomes

    Safety control of monotone systems with bounded uncertainties

    Full text link
    Monotone systems are prevalent in models of engineering applications such as transportation and biological networks. In this paper, we investigate the problem of finding a control strategy for a discrete time positive monotone system with bounded uncertainties such that the evolution of the system is guaranteed to be confined to a safe set in the state space for all times. By exploiting monotonicity, we propose an approach to this problem which is based on constraint programming. We find control strategies that are based on repetitions of finite sequences of control actions. We show that, under assumptions made in the paper, safety control of monotone systems does not require state measurement. We demonstrate the results on a signalized urban traffic network, where the safety objective is to keep the traffic flow free of congestion.This work was partially supported by the NSF under grants CPS-1446151 and CMMI-1400167. (CPS-1446151 - NSF; CMMI-1400167 - NSF

    Identification of infrastructure related risk factors, Deliverable 5.1 of the H2020 project SafetyCube

    Get PDF
    The present Deliverable (D5.1) describes the identification and evaluation of infrastructure related risk factors. It outlines the results of Task 5.1 of WP5 of SafetyCube, which aimed to identify and evaluate infrastructure related risk factors and related road safety problems by (i) presenting a taxonomy of infrastructure related risks, (ii) identifying “hot topics” of concern for relevant stakeholders and (iii) evaluating the relative importance for road safety outcomes (crash risk, crash frequency and severity etc.) within the scientific literature for each identified risk factor. To help achieve this, Task 5.1 has initially exploited current knowledge (e.g. existing studies) and, where possible, existing accident data (macroscopic and in-depth) in order to identify and rank risk factors related to the road infrastructure. This information will help further on in WP5 to identify countermeasures for addressing these risk factors and finally to undertake an assessment of the effects of these countermeasures. In order to develop a comprehensive taxonomy of road infrastructure-related risks, an overview of infrastructure safety across Europe was undertaken to identify the main types of road infrastructure-related risks, using key resources and publications such as the European Road Safety Observatory (ERSO), The Handbook of Road Safety Measures (Elvik et al., 2009), the iRAP toolkit and the SWOV factsheets, to name a few. The taxonomy developed contained 59 specific risk factors within 16 general risk factors, all within 10 infrastructure elements. In addition to this, stakeholder consultations in the form of a series of workshops were undertaken to prioritise risk factors (‘hot topics’) based on the feedback from the stakeholders on which risk factors they considered to be the most important or most relevant in terms of road infrastructure safety. The stakeholders who attended the workshops had a wide range of backgrounds (e.g. government, industry, research, relevant consumer organisations etc.) and a wide range of interests and knowledge. The identified ‘hot topics’ were ranked in terms of importance (i.e. which would have the greatest effect on road safety). SafetyCube analysis will put the greatest emphasis on these topics (e.g. pedestrian/cyclist safety, crossings, visibility, removing obstacles). To evaluate the scientific literature, a methodology was developed in Work Package 3 of the SafetyCube project. WP5 has applied this methodology to road infrastructure risk factors. This uniformed approach facilitated systematic searching of the scientific literature and consistent evaluation of the evidence for each risk factor. The method included a literature search strategy, a ‘coding template’ to record key data and metadata from individual studies, and guidelines for summarising the findings (Martensen et al, 2016b). The main databases used in the WP5 literature search were Scopus and TRID, with some risk factors utilising additional database searches (e.g. Google Scholar, Science Direct). Studies using crash data were considered highest priority. Where a high number of studies were found, further selection criteria were applied to ensure the best quality studies were included in the analysis (e.g. key meta-analyses, recent studies, country origin, importance). Once the most relevant studies were identified for a risk factor, each study was coded within a template developed in WP3. Information coded for each study included road system element, basic study information, road user group information, study design, measures of exposure, measures of outcomes and types of effects. The information in the coded templates will be included in the relational database developed to serve as the main source (‘back end’) of the Decision Support System (DSS) being developed for SafetyCube. Each risk factor was assigned a secondary coding partner who would carry out the control procedure and would discuss with the primary coding partner any coding issues they had found. Once all studies were coded for a risk factor, a synopsis was created, synthesising the coded studies and outlining the main findings in the form of meta-analyses (where possible) or another type of comprehensive synthesis (e.g. vote-count analysis). Each synopsis consists of three sections: a 2 page summary (including abstract, overview of effects and analysis methods); a scientific overview (short literature synthesis, overview of studies, analysis methods and analysis of the effects) and finally supporting documents (e.g. details of literature search and comparison of available studies in detail, if relevant). To enrich the background information in the synopses, in-depth accident investigation data from a number of sources across Europe (i.e. GIDAS, CARE/CADaS) was sourced. Not all risk factors could be enhanced with this data, but where it was possible, the aim was to provide further information on the type of crash scenarios typically found in collisions where specific infrastructure-related risk factors are present. If present, this data was included in the synopsis for the specific risk factor. After undertaking the literature search and coding of the studies, it was found that for some risk factors, not enough detailed studies could be found to allow a synopsis to be written. Therefore, the revised number of specific risk factors that did have a synopsis written was 37, within 7 infrastructure elements. Nevertheless, the coded studies on the remaining risk factors will be included in the database to be accessible by the interested DSS users. At the start of each synopsis, the risk factor is assigned a colour code, which indicates how important this risk factor is in terms of the amount of evidence demonstrating its impact on road safety in terms of increasing crash risk or severity. The code can either be Red (very clear increased risk), Yellow (probably risky), Grey (unclear results) or Green (probably not risky). In total, eight risk factors were given a Red code (e.g. traffic volume, traffic composition, road surface deficiencies, shoulder deficiencies, workzone length, low curve radius), twenty were given a Yellow code (e.g. secondary crashes, risks associated with road type, narrow lane or median, roadside deficiencies, type of junction, design and visibility at junctions) seven were given a Grey code (e.g. congestion, frost and snow, densely spaced junctions etc.). The specific risk factors given the red code were found to be distributed across a range of infrastructure elements, demonstrating that the greatest risk is spread across several aspects of infrastructure design and traffic control. However, four ‘hot topics’ were rated as being risky, which were ‘small work-zone length’, ‘low curve radius’, ‘absence of shoulder’ and ‘narrow shoulder’. Some limitations were identified. Firstly, because of the method used to attribute colour code, it is in theory possible for a risk factor with a Yellow colour code to have a greater overall magnitude of impact on road safety than a risk factor coded Red. This would occur if studies reported a large impact of a risk factor but without sufficient consistency to allocate a red colour code. Road safety benefits should be expected from implementing measures to mitigate Yellow as well as Red coded infrastructure risks. Secondly, findings may have been limited by both the implemented literature search strategy and the quality of the studies identified, but this was to ensure the studies included were of sufficiently high quality to inform understanding of the risk factor. Finally, due to difficulties of finding relevant studies, it was not possible to evaluate the effects on road safety of all topics listed in the taxonomy. The next task of WP5 is to begin identifying measures that will counter the identified risk factors. Priority will be placed on investigating measures aimed to mitigate the risk factors identified as Red. The priority of risk factors in the Yellow category will depend on why they were assigned to this category and whether or not they are a hot topic

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data

    Reliability and Efficiency of Vehicular Network Applications

    Get PDF
    The DSRC/WAVE initiative is forecast to enable a plethora of applications, classified in two broad types of safety and non-safety applications. In the former type, the reliability performance is of tremendous prominence while, in the latter case, the efficiency of information dissemination is the key driving factor. For safety applications, we adopt a systematic approach to analytically investigate the reliability of the communication system in a symbiotic relationship with the host system comprising a vehicular traffic system and radio propagation environment. To this aim, theÂŹ interference factor is identified as the central element of the symbiotic relationship. Our approach to the investigation of interference and its impacts on the communication reliability departs from previous studies by the degree of realism incorporated in the host system model. In one dimension, realistic traffic models are developed to describe the vehicular traffic behaviour. In a second dimension, a realistic radio propagation model is employed to capture the unique signal propagation aspects of the host system. We address the case of non-safety applications by proposing a generic framework as a capstone architecture for the development of new applications and the efficiency evaluation of existing ones. This framework, while being independent from networking technology, enables accurate characterization of the various information dissemination tasks that a node performs in cooperation with others. As the central element of the framework, we propose a game theoretic model to describe the interaction of meeting nodes aiming to exchange information of mutual or social interests. An adaptive mechanism is designed to enable a mobile node to measure the social significance of various information topics, which is then used by the node to prioritize the forwarding of information objects

    Proceedings of the 4th Symposium on Management of Future Motorway and Urban Traffic Systems 2022

    Get PDF
    The 4th Symposium on Management of Future Motorway and Urban Traffic Systems (MFTS) was held in Dresden, Germany, from November 30th to December 2nd, 2022. Organized by the Chair of Traffic Process Automation (VPA) at the “Friedrich List” Faculty of Transport and Traffic Sciences of the TU Dresden, the proceedings of this conference are published as volume 9 in the Chair’s publication series “Verkehrstelematik” and contain a large part of the presented conference extended abstracts. The focus of the MFTS conference 2022 was cooperative management of multimodal transport and reflected the vision of the professorship to be an internationally recognized group in ITS research and education with the goal of optimizing the operation of multimodal transport systems. In 14 MFTS sessions, current topics in demand and traffic management, traffic control in conventional, connected and automated transport, connected and autonomous vehicles, traffic flow modeling and simulation, new and shared mobility systems, digitization, and user behavior and safety were discussed. In addition, special sessions were organized, for example on “Human aspects in traffic modeling and simulation” and “Lesson learned from Covid19 pandemic”, whose descriptions and analyses are also included in these proceedings.:1 Connected and Automated Vehicles 1.1 Traffic-based Control of Truck Platoons on Freeways 1.2 A Lateral Positioning Strategy for Connected and Automated Vehicles in Lane-free Traffic 1.3 Simulation Methods for Mixed Legacy-Autonomous Mainline Train Operations 1.4 Can Dedicated Lanes for Automated Vehicles on Urban Roads Improve Traffic Efficiency? 1.5 GLOSA System with Uncertain Green and Red Signal Phases 2 New Mobility Systems 2.1 A New Model for Electric Vehicle Mobility and Energy Consumption in Urban Traffic Networks 2.2 Shared Autonomous Vehicles Implementation for a Disrupted Public Transport Network 3 Traffic Flow and Simulation 3.1 Multi-vehicle Stochastic Fundamental Diagram Consistent with Transportations Systems Theory 3.2 A RoundD-like Roundabout Scenario in CARLA Simulator 3.3 Multimodal Performance Evaluation of Urban Traffic Control: A Microscopic Simulation Study 3.4 A MILP Framework to Solve the Sustainable System Optimum with Link MFD Functions 3.5 On How Traffic Signals Impact the Fundamental Diagrams of Urban Roads 4 Traffic Control in Conventional Traffic 4.1 Data-driven Methods for Identifying Travel Conditions Based on Traffic and Weather Characteristics 4.2 AI-based Multi-class Traffic Model Oriented to Freeway Traffic Control 4.3 Exploiting Deep Learning and Traffic Models for Freeway Traffic Estimation 4.4 Automatic Design of Optimal Actuated Traffic Signal Control with Transit Signal Priority 4.5 A Deep Reinforcement Learning Approach for Dynamic Traffic Light Control with Transit Signal Priority 4.6 Towards Efficient Incident Detection in Real-time Traffic Management 4.7 Dynamic Cycle Time in Traffic Signal of Cyclic Max-Pressure Control 5 Traffic Control with Autonomous Vehicles 5.1 Distributed Ordering and Optimization for Intersection Management with Connected and Automated Vehicles 5.2 Prioritization of an Automated Shuttle for V2X Public Transport at a Signalized Intersection – a Real-life Demonstration 6 User Behaviour and Safety 6.1 Local Traffic Safety Analyzer (LTSA) - Improved Road Safety and Optimized Signal Control for Future Urban Intersections 7 Demand and Traffic Management 7.1 A Stochastic Programming Method for OD Estimation Using LBSN Check-in Data 7.2 Delineation of Traffic Analysis Zone for Public Transportation OD Matrix Estimation Based on Socio-spatial Practices 8 Workshops 8.1 How to Integrate Human Aspects Into Engineering Science of Transport and Traffic? - a Workshop Report about Discussions on Social Contextualization of Mobility 8.2 Learning from Covid: How Can we Predict Mobility Behaviour in the Face of Disruptive Events? – How to Investigate the Mobility of the FutureDas 4. Symposium zum Management zukĂŒnftiger Autobahn- und Stadtverkehrssysteme (MFTS) fand vom 30. November bis 2. Dezember 2022 in Dresden statt und wurde vom Lehrstuhl fĂŒr Verkehrsprozessautomatisierung (VPA) an der FakultĂ€t Verkehrswissenschaften„Friedrich List“ der TU Dresden organisiert. Der Tagungsband erscheint als Band 9 in der Schriftenreihe „Verkehrstelematik“ des Lehrstuhls und enthĂ€lt einen Großteil der vorgestellten Extended-Abstracts des Symposiums. Der Schwerpunkt des MFTS-Symposiums 2022 lag auf dem kooperativen Management multimodalen Verkehrs und spiegelte die Vision der Professur wider, eine international anerkannte Gruppe in der ITS-Forschung und -Ausbildung mit dem Ziel der Optimierung des Betriebs multimodaler Transportsysteme zu sein. In 14 MFTS-Sitzungen wurden aktuelle Themen aus den Bereichen Nachfrage- und Verkehrsmanagement, Verkehrssteuerung im konventionellen, vernetzten und automatisierten Verkehr, vernetzte und autonome Fahrzeuge, Verkehrsflussmodellierung und -simulation, neue und geteilte MobilitĂ€tssysteme, Digitalisierung sowie Nutzerverhalten und Sicherheit diskutiert. DarĂŒber hinaus wurden Sondersitzungen organisiert, beispielsweise zu „Menschlichen Aspekten bei der Verkehrsmodellierung und -simulation“ und „Lektionen aus der Covid-19-Pandemie“, deren Beschreibungen und Analysen ebenfalls in diesen Tagungsband einfließen.:1 Connected and Automated Vehicles 1.1 Traffic-based Control of Truck Platoons on Freeways 1.2 A Lateral Positioning Strategy for Connected and Automated Vehicles in Lane-free Traffic 1.3 Simulation Methods for Mixed Legacy-Autonomous Mainline Train Operations 1.4 Can Dedicated Lanes for Automated Vehicles on Urban Roads Improve Traffic Efficiency? 1.5 GLOSA System with Uncertain Green and Red Signal Phases 2 New Mobility Systems 2.1 A New Model for Electric Vehicle Mobility and Energy Consumption in Urban Traffic Networks 2.2 Shared Autonomous Vehicles Implementation for a Disrupted Public Transport Network 3 Traffic Flow and Simulation 3.1 Multi-vehicle Stochastic Fundamental Diagram Consistent with Transportations Systems Theory 3.2 A RoundD-like Roundabout Scenario in CARLA Simulator 3.3 Multimodal Performance Evaluation of Urban Traffic Control: A Microscopic Simulation Study 3.4 A MILP Framework to Solve the Sustainable System Optimum with Link MFD Functions 3.5 On How Traffic Signals Impact the Fundamental Diagrams of Urban Roads 4 Traffic Control in Conventional Traffic 4.1 Data-driven Methods for Identifying Travel Conditions Based on Traffic and Weather Characteristics 4.2 AI-based Multi-class Traffic Model Oriented to Freeway Traffic Control 4.3 Exploiting Deep Learning and Traffic Models for Freeway Traffic Estimation 4.4 Automatic Design of Optimal Actuated Traffic Signal Control with Transit Signal Priority 4.5 A Deep Reinforcement Learning Approach for Dynamic Traffic Light Control with Transit Signal Priority 4.6 Towards Efficient Incident Detection in Real-time Traffic Management 4.7 Dynamic Cycle Time in Traffic Signal of Cyclic Max-Pressure Control 5 Traffic Control with Autonomous Vehicles 5.1 Distributed Ordering and Optimization for Intersection Management with Connected and Automated Vehicles 5.2 Prioritization of an Automated Shuttle for V2X Public Transport at a Signalized Intersection – a Real-life Demonstration 6 User Behaviour and Safety 6.1 Local Traffic Safety Analyzer (LTSA) - Improved Road Safety and Optimized Signal Control for Future Urban Intersections 7 Demand and Traffic Management 7.1 A Stochastic Programming Method for OD Estimation Using LBSN Check-in Data 7.2 Delineation of Traffic Analysis Zone for Public Transportation OD Matrix Estimation Based on Socio-spatial Practices 8 Workshops 8.1 How to Integrate Human Aspects Into Engineering Science of Transport and Traffic? - a Workshop Report about Discussions on Social Contextualization of Mobility 8.2 Learning from Covid: How Can we Predict Mobility Behaviour in the Face of Disruptive Events? – How to Investigate the Mobility of the Futur
    • 

    corecore