4,197 research outputs found

    The persistence of a visual dominance effect in a telemanipulator task: A comparison between visual and electrotactile feedback

    Get PDF
    The possibility to use an electrotactile stimulation in teleoperation and to observe the interpretation of such information as a feedback to the operator was investigated. It is proposed that visual feedback is more informative than an electrotactile one; and that complex electrotactile feedback slows down both the motor decision and motor response processes, is processed as an all or nothing signal, and bypasses the receptive structure and accesses directly in a working memory where information is sequentially processed and where memory is limited in treatment capacity. The electrotactile stimulation is used as an alerting signal. It is suggested that the visual dominance effect is the result of the advantage of both a transfer function and a sensory memory register where information is pretreated and memorized for a short time. It is found that dividing attention has an effect on the acquisition of the information but not on the subsequent decision processes

    The application of NASREM to remote robot control

    Get PDF
    The implementation of a remote robot controller, wherein the distance to the remote robot causes significant communication time delays is described. The NASREM telrobot control architecture is used as a basis for the implementation of the system. Levels 1 through 4 of the hierarchy were implemented. The solution to the problems encounterd during the implementation and those which are unique to remote robot control are described

    Development of a flexible test-bed for robotics, telemanipulation and servicing research

    Get PDF
    The development of a flexible operation test-bed, based around a commercially available ASEA industrial robot is described. The test-bed was designed to investigate fundamental human factors issues concerned with the unique problems of robotic manipulation in the hostile environment of Space

    SARSCEST (human factors)

    Get PDF
    People interact with the processes and products of contemporary technology. Individuals are affected by these in various ways and individuals shape them. Such interactions come under the label 'human factors'. To expand the understanding of those to whom the term is relatively unfamiliar, its domain includes both an applied science and applications of knowledge. It means both research and development, with implications of research both for basic science and for development. It encompasses not only design and testing but also training and personnel requirements, even though some unwisely try to split these apart both by name and institutionally. The territory includes more than performance at work, though concentration on that aspect, epitomized in the derivation of the term ergonomics, has overshadowed human factors interest in interactions between technology and the home, health, safety, consumers, children and later life, the handicapped, sports and recreation education, and travel. Two aspects of technology considered most significant for work performance, systems and automation, and several approaches to these, are discussed

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Synchronized computational architecture for generalized bilateral control of robot arms

    Get PDF
    A master six degree of freedom Force Reflecting Hand Controller (FRHC) is available at a master site where a received image displays, in essentially real time, a remote robotic manipulator which is being controlled in the corresponding six degree freedom by command signals which are transmitted to the remote site in accordance with the movement of the FRHC at the master site. Software is user-initiated at the master site in order to establish the basic system conditions, and then a physical movement of the FRHC in Cartesean space is reflected at the master site by six absolute numbers that are sensed, translated and computed as a difference signal relative to the earlier position. The change in position is then transmitted in that differential signal form over a high speed synchronized bilateral communication channel which simultaneously returns robot-sensed response information to the master site as forces applied to the FRHC so that the FRHC reflects the feel of what is taking place at the remote site. A system wide clock rate is selected at a sufficiently high rate that the operator at the master site experiences the Force Reflecting operation in real time

    Impact of end effector technology on telemanipulation performance

    Get PDF
    Generic requirements for end effector design are briefly summarized as derived from generic functional and operational requirements. Included is a brief summary of terms and definitions related to end effector technology. The second part contains a brief overview of end effector technology work as JPL during the past ten years, with emphasis on the evolution of new mechanical, sensing and control capabilities of end effectors. The third and major part is devoted to the description of current end effector technology. The ongoing work addresses mechanical, sensing and control details with emphasis on mechanical ruggedness, increased resolution in sensing, and close electronic and control integration with overall telemanipulator control system

    Neural Representations for Sensory-Motor Control I: Head-Centered 3-D Target Positions from Opponent Eye Commands

    Full text link
    This article describes how corollary discharges from outflow eye movement commands can be transformed by two stages of opponent neural processing into a head-centered representation of 3-D target position. This representation implicitly defines a cyclopean coordinate system whose variables approximate the binocular vergence and spherical horizontal and vertical angles with respect to the observer's head. Various psychophysical data concerning binocular distance perception and reaching behavior are clarified by this representation. The representation provides a foundation for learning head-centered and body-centered invariant representations of both foveated and non-foveated 3-D target positions. It also enables a solution to be developed of the classical motor equivalence problem, whereby many different joint configurations of a redundant manipulator can all be used to realize a desired trajectory in 3-D space.Air Force Office of Scientific Research (URI 90-0175); Defense Advanced Research Projects Agency (AFOSR-90-0083); National Science Foundation (IRI-87-16960, IRI-90-24877

    Predictive Context-Based Adaptive Compliance for Interaction Control of Robot Manipulators

    Get PDF
    In classical industrial robotics, robots are concealed within structured and well-known environments performing highly-repetitive tasks. In contrast, current robotic applications require more direct interaction with humans, cooperating with them to achieve a common task and entering home scenarios. Above all, robots are leaving the world of certainty to work in dynamically-changing and unstructured environments that might be partially or completely unknown to them. In such environments, controlling the interaction forces that appear when a robot contacts a certain environment (be the environment an object or a person) is of utmost importance. Common sense suggests the need to leave the stiff industrial robots and move towards compliant and adaptive robot manipulators that resemble the properties of their biological counterpart, the human arm. This thesis focuses on creating a higher level of intelligence for active compliance control methods applied to robot manipulators. This work thus proposes an architecture for compliance regulation named Predictive Context-Based Adaptive Compliance (PCAC) which is composed of three main components operating around a 'classical' impedance controller. Inspired by biological systems, the highest-level component is a Bayesian-based context predictor that allows the robot to pre-regulate the arm compliance based on predictions about the context the robot is placed in. The robot can use the information obtained while contacting the environment to update its context predictions and, in case it is necessary, to correct in real time for wrongly predicted contexts. Thus, the predictions are used both for anticipating actions to be taken 'before' proceeding with a task as well as for applying real-time corrective measures 'during' the execution of a in order to ensure a successful performance. Additionally, this thesis investigates a second component to identify the current environment among a set of known environments. This in turn allows the robot to select the proper compliance controller. The third component of the architecture presents the use of neuroevolutionary techniques for selecting the optimal parameters of the interaction controller once a certain environment has been identified

    Flight telerobot mechanism design: Problems and challenges

    Get PDF
    Problems and challenges of designing flight telerobot mechanisms are discussed. Specific experiences are drawn from the following system developments: (1) the Force Reflecting Hand Controller, (2) the Smart End Effector, (3) the force-torque sensor, and a generic multi-degrees-of-freedom manipulator
    • …
    corecore