16 research outputs found

    Design and Implementation of a Tracer Driver: Easy and Efficient Dynamic Analyses of Constraint Logic Programs

    Full text link
    Tracers provide users with useful information about program executions. In this article, we propose a ``tracer driver''. From a single tracer, it provides a powerful front-end enabling multiple dynamic analysis tools to be easily implemented, while limiting the overhead of the trace generation. The relevant execution events are specified by flexible event patterns and a large variety of trace data can be given either systematically or ``on demand''. The proposed tracer driver has been designed in the context of constraint logic programming; experiments have been made within GNU-Prolog. Execution views provided by existing tools have been easily emulated with a negligible overhead. Experimental measures show that the flexibility and power of the described architecture lead to good performance. The tracer driver overhead is inversely proportional to the average time between two traced events. Whereas the principles of the tracer driver are independent of the traced programming language, it is best suited for high-level languages, such as constraint logic programming, where each traced execution event encompasses numerous low-level execution steps. Furthermore, constraint logic programming is especially hard to debug. The current environments do not provide all the useful dynamic analysis tools. They can significantly benefit from our tracer driver which enables dynamic analyses to be integrated at a very low cost.Comment: To appear in Theory and Practice of Logic Programming (TPLP), Cambridge University Press. 30 pages

    Unification of Compile-Time and Runtime Metaprogramming in Scala

    Get PDF
    Metaprogramming is a technique that consists in writing programs that treat other programs as data. This paradigm of software development contributes to a multitude of approaches that improve programmer productivity, including code generation, program analysis and domain-specific languages. Many programming languages and runtime systems provide support for metaprogramming. Programming platforms often distinguish the notions of compile-time and runtime metaprogramming, depending on the phase of the program lifecycle when metaprograms execute. It is common for different lifecycle phases to be hosted in different environ- ments, so it is also common for different kinds of metaprogramming to provide different capabilities to metaprogrammers. In this dissertation, we present an exploration of the idea of unifying compile-time and runtime metaprogramming in Scala. We focus on the practical aspect of the exploration; most of the described designs are available as popular software products, and some of them have become part of the standard distribution of Scala. First, guided by the motivation to consolidate disparate metaprogramming techniques available in earlier versions of Scala, we introduce scala.reflect, a unified metaprogram- ming framework that uses a language model derived from the Scala compiler to run metaprograms both at compile time and at runtime. Secondly, armed by the newfound metaprogramming powers, we describe Scala macros, a language-integrated compile-time metaprogramming facility based on scala.reflect. Thanks to the comprehensive nature of scala.reflect, macros are able to work with both syntactic and semantic information about Scala programs, enabling a wide range of previously impractical or impossible use cases. Finally, based on our experience and user feedback, we identify key strengths and weaknesses of scala.reflect and macros. We propose scala.meta, a new unified metapro- gramming framework, and inline/meta, a new macro system based on scala.meta, that take the best from their predecessors and address the most important problems

    Topics in Programming Languages, a Philosophical Analysis through the case of Prolog

    Get PDF
    [EN]Programming languages seldom find proper anchorage in philosophy of logic, language and science. is more, philosophy of language seems to be restricted to natural languages and linguistics, and even philosophy of logic is rarely framed into programming languages topics. The logic programming paradigm and Prolog are, thus, the most adequate paradigm and programming language to work on this subject, combining natural language processing and linguistics, logic programming and constriction methodology on both algorithms and procedures, on an overall philosophizing declarative status. Not only this, but the dimension of the Fifth Generation Computer system related to strong Al wherein Prolog took a major role. and its historical frame in the very crucial dialectic between procedural and declarative paradigms, structuralist and empiricist biases, serves, in exemplar form, to treat straight ahead philosophy of logic, language and science in the contemporaneous age as well. In recounting Prolog's philosophical, mechanical and algorithmic harbingers, the opportunity is open to various routes. We herein shall exemplify some: - the mechanical-computational background explored by Pascal, Leibniz, Boole, Jacquard, Babbage, Konrad Zuse, until reaching to the ACE (Alan Turing) and EDVAC (von Neumann), offering the backbone in computer architecture, and the work of Turing, Church, Gödel, Kleene, von Neumann, Shannon, and others on computability, in parallel lines, throughly studied in detail, permit us to interpret ahead the evolving realm of programming languages. The proper line from lambda-calculus, to the Algol-family, the declarative and procedural split with the C language and Prolog, and the ensuing branching and programming languages explosion and further delimitation, are thereupon inspected as to relate them with the proper syntax, semantics and philosophical élan of logic programming and Prolog

    Management of object-oriented action-based distributed programs

    Get PDF
    Phd ThesisThis thesis addresses the problem of managing the runtime behaviour of distributed programs. The thesis of this work is that management is fundamentally an information processing activity and that the object model, as applied to actionbased distributed systems and database systems, is an appropriate representation of the management information. In this approach, the basic concepts of classes, objects, relationships, and atomic transition systems are used to form object models of distributed programs. Distributed programs are collections of objects whose methods are structured using atomic actions, i.e., atomic transactions. Object models are formed of two submodels, each representing a fundamental aspect of a distributed program. The structural submodel represents a static perspective of the distributed program, and the control submodel represents a dynamic perspective of it. Structural models represent the program's objects, classes and their relationships. Control models represent the program's object states, events, guards and actions-a transition system. Resolution of queries on the distributed program's object model enable the management system to control certain activities of distributed programs. At a different level of abstraction, the distributed program can be seen as a reactive system where two subprograms interact: an application program and a management program; they interact only through sensors and actuators. Sensors are methods used to probe an object's state and actuators are methods used to change an object's state. The management program is capable to prod the application program into action by activating sensors and actuators available at the interface of the application program. Actions are determined by management policies that are encoded in the management program. This way of structuring the management system encourages a clear modularization of application and management distributed programs, allowing better separation of concerns. Managemental concerns can be dealt with by the management program, functional concerns can be assigned to the application program. The object-oriented action-based computational model adopted by the management system provides a natural framework for the implementation of faulttolerant distributed programs. Object orientation provides modularity and extensibility through object encapsulation. Atomic actions guarantee the consistency of the objects of the distributed program despite concurrency and failures. Replication of the distributed program provides increased fault-tolerance by guaranteeing the consistent progress of the computation, even though some of the replicated objects can fail. A prototype management system based on the management theory proposed above has been implemented atop Arjuna; an object-oriented programming system which provides a set of tools for constructing fault-tolerant distributed programs. The management system is composed of two subsystems: Stabilis, a management system for structural information, and Vigil, a management system for control information. Example applications have been implemented to illustrate the use of the management system and gather experimental evidence to give support to the thesis.CNPq (Consellho Nacional de Desenvolvimento Cientifico e Tecnol6gico, Brazil): BROADCAST (Basic Research On Advanced Distributed Computing: from Algorithms to SysTems)

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Mapper: an efficient data transformation operator

    Get PDF
    Tese de doutoramento em Informática (Engenharia Informática), apresentada à Universidade de Lisboa através da Faculdade de Ciências, 2008Data transformations are fundamental operations in legacy data migration, data integration, data cleaning, and data warehousing. These operations are often implemented as relational queries that aim at leveraging the optimization capabilities of most DBMSs. However, relational query languages like SQL are not expressive enough to specify one-to-many data transformations, an important class of data transformations that produce several output tuples for a single input tuple. These transformations are required for solving several types of data heterogeneities, like those that occur when the source data represents aggregations of the target data. This thesis proposes a new relational operator, named data mapper, as an extension to the relational algebra to address one-to-many data transformations and focus on its optimization. It also provides algebraic rewriting rules and execution algorithms for the logical and physical optimization, respectively. As a result, queries may be expressed as a combination of standard relational operators and mappers. The proposed optimizations have been experimentally validated and the key factors that influence the obtained performance gains identified. Keywords: Relational Algebra, Data Transformation, Data Integration, Data Cleaning, Data WarehousingAs transformações de dados são operações fundamentais em processos de migração de dados de sistemas legados, integração de dados, limpeza de dados e ao refrescamento de Data Warehouses. Usualmente, estas operações são implementadas através de interrogações relacionais por forma a explorar as optimizações proporcionadas pela maioria dos SGBDs. No entanto, as linguagens de interrogação relacionais, como o SQL, não são suficientemente expressivas para especificar as transformações de dados do tipo um-para-muitos. Esta importante classe de transformações é necessária para resolver de forma adequada diversos tipos de heterogeneidades de dados tais como as que decorrem de situações em que os dados do esquema origem representam uma agregação dos dados do sistema destino. Esta tese propõe a extensão da álgebra relacional com um novo operador relacional denominado data mapper, por forma a permitir a especificação e optimização de transformações de dados um-para-muitos. O trabalho apresenta regras de reescrita algébrica juntamente com diversos algoritmos de execução que proporcionam, respectivamente, a optimização lógica e física de transformações de dados um-para-muitos. Como resultado, é possivel optimizar transformações de dados que combinem operadores relacionais comuns com data mappers. As optimizações propostas foram validadas experimentalmente e identificados os factores que influênciam os seus respectivos ganhos

    Fundamentals

    Get PDF
    Volume 1 establishes the foundations of this new field. It goes through all the steps from data collection, their summary and clustering, to different aspects of resource-aware learning, i.e., hardware, memory, energy, and communication awareness. Machine learning methods are inspected with respect to resource requirements and how to enhance scalability on diverse computing architectures ranging from embedded systems to large computing clusters

    Separation of concerns: strategies for complex parametric design modelling

    Get PDF
    Parametric design systems are indispensable in enabling flexibility during the delivery of solutions to geometrically complex and ill-formed design problems. However, this flexibility is provided at the expense of coercing designers into adopting a highly structured design process. While this inflexibility has been widely documented in the literature, there are no examples of strategies for overcoming it. I have investigated how to overcome the inflexibility inherent in parametric modeling systems through the development of two major strategies and eight sub strategies. The strategies were developed through a mixed-method research methodology combining the case-study method and the action research method, in order to analyse the eight real world case-studies presented in support of this thesis. The primary finding of this research is that we need better ways to integrate automation in design modelling while simultaneously we need more tacit interaction through “Direct Modelling” with our models in order to achieve a greater flexibility in design modelling. The approaches analysed in this thesis have demonstrated through the eight specific case-studies how designers can reasonably achieve disruptive variation within the flexible design environments which the parametric design paradigm fosters. The three intervention modes: Internal Code, External Code and Bespoke Approach, addressed challenges to flexibility within parametric design software and ways to overcome them depending on the nature of the problem and the suitability of the strategy to the design problem
    corecore