18,487 research outputs found

    What drives sound symbolism? Different acoustic cues underlie sound-size and sound-shape mappings

    Get PDF
    Sound symbolism refers to the non-arbitrary mappings that exist between phonetic properties of speech sounds and their meaning. Despite there being an extensive literature on the topic, the acoustic features and psychological mechanisms that give rise to sound symbolism are not, as yet, altogether clear. The present study was designed to investigate whether different sets of acoustic cues predict size and shape symbolism, respectively. In two experiments, participants judged whether a given consonant-vowel speech sound was large or small, round or angular, using a size or shape scale. Visual size judgments were predicted by vowel formant F1 in combination with F2, and by vowel duration. Visual shape judgments were, however, predicted by formants F2 and F3. Size and shape symbolism were thus not induced by a common mechanism, but rather were distinctly affected by acoustic properties of speech sounds. These findings portray sound symbolism as a process that is not based merely on broad categorical contrasts, such as round/unround and front/back vowels. Rather, individuals seem to base their sound-symbolic judgments on specific sets of acoustic cues, extracted from speech sounds, which vary across judgment dimensions

    What drives sound symbolism? Different acoustic cues underlie sound-size and sound-shape mappings

    Get PDF
    Sound symbolism refers to the non-arbitrary mappings that exist between phonetic properties of speech sounds and their meaning. Despite there being an extensive literature on the topic, the acoustic features and psychological mechanisms that give rise to sound symbolism are not, as yet, altogether clear. The present study was designed to investigate whether different sets of acoustic cues predict size and shape symbolism, respectively. In two experiments, participants judged whether a given consonant-vowel speech sound was large or small, round or angular, using a size or shape scale. Visual size judgments were predicted by vowel formant F1 in combination with F2, and by vowel duration. Visual shape judgments were, however, predicted by formants F2 and F3. Size and shape symbolism were thus not induced by a common mechanism, but rather were distinctly affected by acoustic properties of speech sounds. These findings portray sound symbolism as a process that is not based merely on broad categorical contrasts, such as round/unround and front/back vowels. Rather, individuals seem to base their sound-symbolic judgments on specific sets of acoustic cues, extracted from speech sounds, which vary across judgment dimensions

    Microgravity: a Teacher's Guide with Activities, Secondary Level

    Get PDF
    This NASA Educational Publication is a teacher's guide that focuses on microgravity for the secondary level student. The introduction answers the question 'What is microgravity?', as well as describing gravity and creating microgravity. Following the introduction is a microgravity primer which covers such topics as the fluid state, combustion science, materials science, biotechnology, as well as microgravity and space flight. Seven different activities are described in the activities section and are written by authors prominent in the field. The concluding sections of the book include a glossary, microgravity references, and NASA educational resources

    The NASA Suborbital Program: A status review

    Get PDF
    The status of the NASA suborbital program is reviewed and its importance to astrophysical and geophysical programs is assessed. A survey of past scientific and developmental accomplishments, an examination of the trends in program costs, and an analysis of current and future program roles are included. The technical disciplines examined are primarily those of astronomy/astrophysics/solar physics and magnetospheric/ionospheric/ atmospheric physics

    Resident research associateships. Postdoctoral and senior research awards: Opportunities for research at the Jet Propulsion Laboratory

    Get PDF
    Opportunities for research as part of NASA-sponsored programs at the JPL cover: Earth and space sciences; systems; telecommunications science and engineering; control and energy conversion; applied mechanics; information systems; and observational systems. General information on applying for an award for tenure as a guest investigator, conditions, of the award, and details of the application procedure are provided

    Microgravity: A Teacher's Guide With Activities in Science, Mathematics, and Technology

    Get PDF
    The purpose of this curriculum supplement guide is to define and explain microgravity and show how microgravity can help us learn about the phenomena of our world. The front section of the guide is designed to provide teachers of science, mathematics, and technology at many levels with a foundation in microgravity science and applications. It begins with background information for the teacher on what microgravity is and how it is created. This is followed with information on the domains of microgravity science research; biotechnology, combustion science, fluid physics, fundamental physics, materials science, and microgravity research geared toward exploration. The background section concludes with a history of microgravity research and the expectations microgravity scientists have for research on the International Space Station. Finally, the guide concludes with a suggested reading list, NASA educational resources including electronic resources, and an evaluation questionnaire

    Classifier Performance in Materials Sorting Using Sound Properties

    Get PDF
    This paper explores an intelligent classification of different materials from their sound properties irrespective of shape, texture or size. This is towards the building of smart devices particularly useful in waste sorting and recycling.  The selected materials are of three broad categories namely metals, glass and plastic. Pre-processing involves filtering noise from the captured sound data, application of principal component analysis (PCA) was carried on extracted frequency and bandwidth feature vectors with the aim of extracting the characteristic properties that contribute the most to variance in order to improve classification accuracy of the training samples. Some common classifiers were tested with the data for accuracy of classification. These include KNN, Random Forest, Adaboost, SVM, Neural Network. KNN gave the best classification accuracy of 96.8%, while the Support Vector Machine (SVM) gave the least performance. By including the band width data for the three materials, it was observed that better identification of materials was achieved.

    Perception of the object attributes for sound synthesis purposes

    Get PDF
    International audienceThis paper presents a work in progress on the perception of the attributes of the shape of a resonant object. As part of the ecological approach to perception-assuming that a sound contains specific morphologies that convey perceptually relevant information responsible for its recognition, called invariants-the PRISM laboratory has developed an environmental sound synthesizer aiming to provide perceptual and intuitive controls for a non-expert user. Following a brief presentation of the di↵erent strategies for controlling the perceptual attributes of the object, we present an experiment conducted with calibrated sounds generated by a physically-informed synthesis model. This test focuses on the perception of the shape of the object, more particularly its width and thickness since these attributes, especially the thickness, have not been much studied in the literature from a perceptual point of view. The first results show that the perception of width is di cult for listeners, while the perception of thickness is much easier. This study allows us to validate the proposed control strategy. Further works are planned to better characterize the perceptual invariants relevant for shape perception

    Auditory and tactile recognition of resonant material vibrations in a passive task of bouncing perception

    Get PDF
    Besides vision and audition, everyday materials can be passively explored also using touch if they provide tactile feedback to users, for instance in consequence of an external force exciting their natural resonances. If such resonances are known to provide informative auditory cues of material, on the other hand their role when a recognition is made through touch is debatable. Even more questionable is a material recognition from their reproductions: if happening, then they could be used to enrich existing touch-screen interactions with ecological auditory and haptic feedback furthermore requiring inexpensive actuation. With this goal in mind, two experiments are proposed evaluating user\u2019s ability to classify wooden, plastic, and metallic surfaces respectively using auditory and haptic cues. Al- though the literature reports successful auditory classification of everyday material simulations, especially the passive recognition of such material reproductions by holding a finger on a vibrating glass surface has never been tested. By separately reproducing the sound and vibration of a ping-pong ball bouncing on wood, plastic and metal surfaces, our tests report not only auditory, but also tac- tile recognition of the same materials significantly above chance. Discrepancies existing between our and previously reported results are discussed

    Workshop on Antarctic Glaciology and Meteorites

    Get PDF
    The state of knowledge of meteorites and glaciology is summarized, and directions for research are suggested
    • …
    corecore