483 research outputs found

    Artificial Intelligence for Sustainability—A Systematic Review of Information Systems Literature

    Get PDF
    The booming adoption of Artificial Intelligence (AI) likewise poses benefits and challenges. In this paper, we particularly focus on the bright side of AI and its promising potential to face our society’s grand challenges. Given this potential, different studies have already conducted valuable work by conceptualizing specific facets of AI and sustainability, including reviews on AI and Information Systems (IS) research or AI and business values. Nonetheless, there is still little holistic knowledge at the intersection of IS, AI, and sustainability. This is problematic because the IS discipline, with its socio-technical nature, has the ability to integrate perspectives beyond the currently dominant technological one as well as can advance both theory and the development of purposeful artifacts. To bridge this gap, we disclose how IS research currently makes use of AI to boost sustainable development. Based on a systematically collected corpus of 95 articles, we examine sustainability goals, data inputs, technologies and algorithms, and evaluation approaches that coin the current state of the art within the IS discipline. This comprehensive overview enables us to make more informed investments (e.g., policy and practice) as well as to discuss blind spots and possible directions for future research

    Bias and Fairness in Large Language Models: A Survey

    Full text link
    Rapid advancements of large language models (LLMs) have enabled the processing, understanding, and generation of human-like text, with increasing integration into systems that touch our social sphere. Despite this success, these models can learn, perpetuate, and amplify harmful social biases. In this paper, we present a comprehensive survey of bias evaluation and mitigation techniques for LLMs. We first consolidate, formalize, and expand notions of social bias and fairness in natural language processing, defining distinct facets of harm and introducing several desiderata to operationalize fairness for LLMs. We then unify the literature by proposing three intuitive taxonomies, two for bias evaluation, namely metrics and datasets, and one for mitigation. Our first taxonomy of metrics for bias evaluation disambiguates the relationship between metrics and evaluation datasets, and organizes metrics by the different levels at which they operate in a model: embeddings, probabilities, and generated text. Our second taxonomy of datasets for bias evaluation categorizes datasets by their structure as counterfactual inputs or prompts, and identifies the targeted harms and social groups; we also release a consolidation of publicly-available datasets for improved access. Our third taxonomy of techniques for bias mitigation classifies methods by their intervention during pre-processing, in-training, intra-processing, and post-processing, with granular subcategories that elucidate research trends. Finally, we identify open problems and challenges for future work. Synthesizing a wide range of recent research, we aim to provide a clear guide of the existing literature that empowers researchers and practitioners to better understand and prevent the propagation of bias in LLMs

    Integrating deep and shallow natural language processing components : representations and hybrid architectures

    Get PDF
    We describe basic concepts and software architectures for the integration of shallow and deep (linguistics-based, semantics-oriented) natural language processing (NLP) components. The main goal of this novel, hybrid integration paradigm is improving robustness of deep processing. After an introduction to constraint-based natural language parsing, we give an overview of typical shallow processing tasks. We introduce XML standoff markup as an additional abstraction layer that eases integration of NLP components, and propose the use of XSLT as a standardized and efficient transformation language for online NLP integration. In the main part of the thesis, we describe our contributions to three hybrid architecture frameworks that make use of these fundamentals. SProUT is a shallow system that uses elements of deep constraint-based processing, namely type hierarchy and typed feature structures. WHITEBOARD is the first hybrid architecture to integrate not only part-of-speech tagging, but also named entity recognition and topological parsing, with deep parsing. Finally, we present Heart of Gold, a middleware architecture that generalizes WHITEBOARD into various dimensions such as configurability, multilinguality and flexible processing strategies. We describe various applications that have been implemented using the hybrid frameworks such as structured named entity recognition, information extraction, creative document authoring support, deep question analysis, as well as evaluations. In WHITEBOARD, e.g., it could be shown that shallow pre-processing increases both coverage and efficiency of deep parsing by a factor of more than two. Heart of Gold not only forms the basis for applications that utilize semanticsoriented natural language analysis, but also constitutes a complex research instrument for experimenting with novel processing strategies combining deep and shallow methods, and eases replication and comparability of results.Diese Arbeit beschreibt Grundlagen und Software-Architekturen für die Integration von flachen mit tiefen (linguistikbasierten und semantikorientierten) Verarbeitungskomponenten für natürliche Sprache. Das Hauptziel dieses neuartigen, hybriden Integrationparadigmas ist die Verbesserung der Robustheit der tiefen Verarbeitung. Nach einer Einführung in constraintbasierte Analyse natürlicher Sprache geben wir einen Überblick über typische Aufgaben flacher Sprachverarbeitungskomponenten. Wir führen XML Standoff-Markup als zusätzliche Abstraktionsebene ein, mit deren Hilfe sich Sprachverarbeitungskomponenten einfacher integrieren lassen. Ferner schlagen wir XSLT als standardisierte und effiziente Transformationssprache für die Online-Integration vor. Im Hauptteil der Arbeit stellen wir unsere Beiträge zu drei hybriden Architekturen vor, welche auf den beschriebenen Grundlagen aufbauen. SProUT ist ein flaches System, das Elemente tiefer Verarbeitung wie Typhierarchie und getypte Merkmalsstrukturen nutzt. WHITEBOARD ist das erste System, welches nicht nur Part-of-speech-Tagging, sondern auch Eigennamenerkennung und flaches topologisches Parsing mit tiefer Verarbeitung kombiniert. Schließlich wird Heart of Gold vorgestellt, eine Middleware-Architektur, welche WHITEBOARD hinsichtlich verschiedener Dimensionen wie Konfigurierbarkeit, Mehrsprachigkeit und Unterstützung flexibler Verarbeitungsstrategien generalisiert. Wir beschreiben verschiedene, mit Hilfe der hybriden Architekturen implementierte Anwendungen wie strukturierte Eigennamenerkennung, Informationsextraktion, Kreativitätsunterstützung bei der Dokumenterstellung, tiefe Frageanalyse, sowie Evaluationen. So konnte z.B. in WHITEBOARD gezeigt werden, dass durch flache Vorverarbeitung sowohl Abdeckung als auch Effizienz des tiefen Parsers mehr als verdoppelt werden. Heart of Gold bildet nicht nur Grundlage für semantikorientierte Sprachanwendungen, sondern stellt auch eine wissenschaftliche Experimentierplattform für weitere, neuartige Kombinationsstrategien dar, welche zudem die Replizierbarkeit und Vergleichbarkeit von Ergebnissen erleichtert

    Machine Learning Models for Educational Platforms

    Get PDF
    Scaling up education online and onlife is presenting numerous key challenges, such as hardly manageable classes, overwhelming content alternatives, and academic dishonesty while interacting remotely. However, thanks to the wider availability of learning-related data and increasingly higher performance computing, Artificial Intelligence has the potential to turn such challenges into an unparalleled opportunity. One of its sub-fields, namely Machine Learning, is enabling machines to receive data and learn for themselves, without being programmed with rules. Bringing this intelligent support to education at large scale has a number of advantages, such as avoiding manual error-prone tasks and reducing the chance that learners do any misconduct. Planning, collecting, developing, and predicting become essential steps to make it concrete into real-world education. This thesis deals with the design, implementation, and evaluation of Machine Learning models in the context of online educational platforms deployed at large scale. Constructing and assessing the performance of intelligent models is a crucial step towards increasing reliability and convenience of such an educational medium. The contributions result in large data sets and high-performing models that capitalize on Natural Language Processing, Human Behavior Mining, and Machine Perception. The model decisions aim to support stakeholders over the instructional pipeline, specifically on content categorization, content recommendation, learners’ identity verification, and learners’ sentiment analysis. Past research in this field often relied on statistical processes hardly applicable at large scale. Through our studies, we explore opportunities and challenges introduced by Machine Learning for the above goals, a relevant and timely topic in literature. Supported by extensive experiments, our work reveals a clear opportunity in combining human and machine sensing for researchers interested in online education. Our findings illustrate the feasibility of designing and assessing Machine Learning models for categorization, recommendation, authentication, and sentiment prediction in this research area. Our results provide guidelines on model motivation, data collection, model design, and analysis techniques concerning the above applicative scenarios. Researchers can use our findings to improve data collection on educational platforms, to reduce bias in data and models, to increase model effectiveness, and to increase the reliability of their models, among others. We expect that this thesis can support the adoption of Machine Learning models in educational platforms even more, strengthening the role of data as a precious asset. The thesis outputs are publicly available at https://www.mirkomarras.com

    Artificial intelligence and the limits of the humanities

    Full text link
    The complexity of cultures in the modern world is now beyond human comprehension. Cognitive sciences cast doubts on the traditional explanations based on mental models. The core subjects in humanities may lose their importance. Humanities have to adapt to the digital age. New, interdisciplinary branches of humanities emerge. Instant access to information will be replaced by instant access to knowledge. Understanding the cognitive limitations of humans and the opportunities opened by the development of artificial intelligence and interdisciplinary research necessary to address global challenges is the key to the revitalization of humanities. Artificial intelligence will radically change humanities, from art to political sciences and philosophy, making these disciplines attractive to students and enabling them to go beyond current limitations.Comment: 39 pages, 1 figur

    The Strengths and Pitfalls of Large-Scale Text Mining for Literary Studies

    Get PDF
    This paper is an overview of the opportunities and challenges of using large-scale text mining to answer research questions that stem from the humanities in general and literature specifically. In this paper, we will discuss a data-intensive research methodology and how different views of digital text affect answers to research questions. We will discuss results derived from text mining, how these results can be evaluated, and their relation to hypotheses and research questions. Finally, we will discuss some pitfalls of computational literary analysis and give some pointers as to how these can be avoided.Peer reviewe
    • …
    corecore