2,465 research outputs found

    Drafting in Self-Timed Circuits

    Get PDF
    Intervals between data items propagating in self-timed circuits are controlled by handshake signals rather than by a clock. The sequence of handshakes can be abstracted as the movement of “tokens”. In many self-timed designs, a trailing token will catch up with a leading token, even when it trails by thousands of gate delays. Simulations in SPICE of a simple GasP circular FIFO reveal this effect. Contrary to earlier work, we find the cause of drafting to be charge stored on an isolated node between two series transistors. This mechanism occurs in many decision gates that implement a logical AND. The charge on the floating internal node can drift between actions and thereby change the delay of the gate. Drafting occurs because the delay of a trailing token through a self-timed stage depends on when the leading token departed. This effect, called “drafting”, can be seen in many of the self-timed designs, e.g., GasP, Mousetrap, Click, Micropipeline. Drafting behavior may be modulated by controlling the internal node of the GasP NOR gate. This offers possibilities for using self-timed circuits in applications where the interval between data items carries information for spiking neural networks, security or real-time signal processing

    Self-timed rings as low-phase noise programmable oscillators

    No full text
    International audienceSelf-timed rings are promising for designing highspeed serial links and system clock generators. Indeed, their architecture is well-suited to digitally control their frequency and to easily adapt their phase noise by design. Self-timed ring oscillation frequency does not only depend on the number of stages as the usual inverter ring oscillators but also on their initial state. This feature is extremely important to make them programmable. Moreover, with such ring oscillators, it is easy to control the phase noise by design. Indeed, 3dB phase noise reduction is obtained at the cost of higher power consumption when the number of stages is doubled while keeping the same oscillation frequency, thanks to the oscillator programmability. In this paper, we completely describe the method to design selftimed rings in order to make them programmable and to generate a phase noise in accordance with the specifications. Test chips have been designed and fabricated in AMS 0.35 μm and in STMicroelectonics CMOS 65 nm technology to verify our models and theoretical claims

    Traffic Alert and Collision Avoidance System (TCAS): Cockpit Display of Traffic Information (CDTI) investigation. Phase 1: Feasibility study

    Get PDF
    The possibility of the Threat Alert and Collision Avoidance System (TCAS) traffic sensor and display being used for meaningful Cockpit Display of Traffic Information (CDTI) applications has resulted in the Federal Aviation Administration initiating a project to establish the technical and operational requirements to realize this potential. Phase 1 of the project is presented here. Phase 1 was organized to define specific CDTI applications for the terminal area, to determine what has already been learned about CDTI technology relevant to these applications, and to define the engineering required to supply the remaining TCAS-CDTI technology for capacity benefit realization. The CDTI applications examined have been limited to those appropriate to the final approach and departure phases of flight

    Spacelab system analysis: A study of communications systems for advanced launch systems

    Get PDF
    An analysis of the required performance of internal avionics data bases for future launch vehicles is presented. Suitable local area networks that can service these requirements are determined

    Spacelab system analysis: A study of the Marshall Avionics System Testbed (MAST)

    Get PDF
    An analysis of the Marshall Avionics Systems Testbed (MAST) communications requirements is presented. The average offered load for typical nodes is estimated. Suitable local area networks are determined

    Design of the Annular Suspension and Pointing System (ASPS) (including design addendum)

    Get PDF
    The Annular Suspension and Pointing System is an experiment pointing mount designed for extremely precise 3 axis orientation of shuttle experiments. It utilizes actively controlled magnetic bearing to provide noncontacting vernier pointing and translational isolation of the experiment. The design of the system is presented and analyzed

    Development of the Orion Crew-Service Module Umbilical Retention and Release Mechanism

    Get PDF
    The Orion Crew-Service Module umbilical retention and release mechanism supports, protects and disconnects all of the cross-module commodities between the spacecraft's crew and service modules. These commodities include explosive transfer lines, wiring for power and data, and flexible hoses for ground purge and life support systems. Initial development testing of the mechanism's separation interface resulted in binding failures due to connector misalignments. The separation interface was redesigned with a robust linear guide system, and the connector separation and boom deployment were separated into two discretely sequenced events. Subsequent analysis and testing verified that the design changes corrected the binding. This umbilical separation design will be used on Exploration Flight Test 1 (EFT-1) as well as all future Orion flights. The design is highly modular and can easily be adapted to other vehicles/modules and alternate commodity sets

    Development of the Orion Crew-Service Module Umbilical Retention and Release Mechanism

    Get PDF
    The Orion Crew-Service Module umbilical retention and release mechanism supports, protects and disconnects all of the cross-module commodities between the spacecraft's crew and service modules. These commodities include explosive transfer lines, wiring for power and data, and flexible hoses for ground purge and life support systems. Initial development testing of the mechanism's separation interface resulted in binding failures due to connector misalignments. The separation interface was redesigned with a robust linear guide system, and the connector separation and boom deployment were separated into two discretely sequenced events. Subsequent analysis and testing verified that the design changes corrected the binding. This umbilical separation design will be used on Exploration Flight Test 1 (EFT-1) as well as all future Orion flights. The design is highly modular and can easily be adapted to other vehicles/modules and alternate commodity sets

    Fully Automated Radiation Hardened by Design Circuit Construction

    Get PDF
    abstract: A fully automated logic design methodology for radiation hardened by design (RHBD) high speed logic using fine grained triple modular redundancy (TMR) is presented. The hardening techniques used in the cell library are described and evaluated, with a focus on both layout techniques that mitigate total ionizing dose (TID) and latchup issues and flip-flop designs that mitigate single event transient (SET) and single event upset (SEU) issues. The base TMR self-correcting master-slave flip-flop is described and compared to more traditional hardening techniques. Additional refinements are presented, including testability features that disable the self-correction to allow detection of manufacturing defects. The circuit approach is validated for hardness using both heavy ion and proton broad beam testing. For synthesis and auto place and route, the methodology and circuits leverage commercial logic design automation tools. These tools are glued together with custom CAD tools designed to enable easy conversion of standard single redundant hardware description language (HDL) files into hardened TMR circuitry. The flow allows hardening of any synthesizable logic at clock frequencies comparable to unhardened designs and supports standard low-power techniques, e.g. clock gating and supply voltage scaling.Dissertation/ThesisPh.D. Electrical Engineering 201

    Science and Technology of Future Light Sources

    Full text link
    corecore