18,582 research outputs found

    Social Mental Shaping: Modelling the Impact of Sociality on Autonomous Agents' Mental States

    No full text
    This paper presents a framework that captures how the social nature of agents that are situated in a multi-agent environment impacts upon their individual mental states. Roles and relationships provide an abstraction upon which we develop the notion of social mental shaping. This allows us to extend the standard Belief-Desire-Intention model to account for how common social phenomena (e.g. cooperation, collaborative problem-solving and negotiation) can be integrated into a unified theoretical perspective that reflects a fully explicated model of the autonomous agent's mental state

    A principled information valuation for communications during multi-agent coordination

    No full text
    Decentralised coordination in multi-agent systems is typically achieved using communication. However, in many cases, communication is expensive to utilise because there is limited bandwidth, it may be dangerous to communicate, or communication may simply be unavailable at times. In this context, we argue for a rational approach to communication --- if it has a cost, the agents should be able to calculate a value of communicating. By doing this, the agents can balance the need to communicate with the cost of doing so. In this research, we present a novel model of rational communication that uses information theory to value communications, and employ this valuation in a decision theoretic coordination mechanism. A preliminary empirical evaluation of the benefits of this approach is presented in the context of the RoboCupRescue simulator

    On Agent-Based Software Engineering

    Get PDF
    Agent-based computing represents an exciting new synthesis both for Artificial Intelligence (AI) and, more generally, Computer Science. It has the potential to significantly improve the theory and the practice of modeling, designing, and implementing computer systems. Yet, to date, there has been little systematic analysis of what makes the agent-based approach such an appealing and powerful computational model. Moreover, even less effort has been devoted to discussing the inherent disadvantages that stem from adopting an agent-oriented view. Here both sets of issues are explored. The standpoint of this analysis is the role of agent-based software in solving complex, real-world problems. In particular, it will be argued that the development of robust and scalable software systems requires autonomous agents that can complete their objectives while situated in a dynamic and uncertain environment, that can engage in rich, high-level social interactions, and that can operate within flexible organisational structures

    A Review on Intelligent Agent Systems

    Get PDF
    Multi-agent system (MAS) is a common way of exploiting the potential power of agent by combining many agents in one system. Each agent in a multivalent system has incomplete information and is in capable of solving entire problem on its own. Multi-agent system offers modularity. If a problem domain is particularly complex, large and contain uncertainty, then the one way to address, it to develop a number of functional specific and modular agent that are specialized at solving various problems individually. It also consists of heterogeneous agents implemented by different tool and techniques. MAS can be defining as loosely coupled network of problem solvers that interact to solve problems that are beyond the individual capabilities or knowledge of each problem solver. These problem solvers, often ailed agent are autonomous and can be heterogeneous in nature. MAS is followed by characteristics, Future application, What to be change, problem solving agent, tools and techniques used, various architecture, multi agent applications and finally future Direction and conclusion. Various Characteristics are limited viewpoint, effectively, decentralized; computation is asynchronous, use of genetic algorithms. It has some drawbacks which must be change to make MAS more effective. In the session of problem solving of MAS, the agent performance measure contains many factors to improve it like formulation of problems, task allocation, organizations. In planning of multivalent this paper cover self-interested multivalent interactions, modeling of other agents, managing communication, effective allocation of limited resources to multiple agents with managing resources. Using of tool, to make the agent more efficient in task that are often used. The architecture o MAS followed by three layers, explore, wander, avoid obstacles respectively. Further different and task decomposition can yield various architecture like BDI (Belief Desire Intension), RETSINA. Various applications of multi agent system exist today, to solve the real-life problems, new systems are being developed two distinct categories and also many others like process control, telecommunication, air traffic control, transportation systems, commercial management, electronic commerce, entertainment applications, medical applications. The future aspect of MAS to solve problems that are too large, to allow interconnection and interoperation of multiple existing legacy systems etc

    Arena: A General Evaluation Platform and Building Toolkit for Multi-Agent Intelligence

    Full text link
    Learning agents that are not only capable of taking tests, but also innovating is becoming a hot topic in AI. One of the most promising paths towards this vision is multi-agent learning, where agents act as the environment for each other, and improving each agent means proposing new problems for others. However, existing evaluation platforms are either not compatible with multi-agent settings, or limited to a specific game. That is, there is not yet a general evaluation platform for research on multi-agent intelligence. To this end, we introduce Arena, a general evaluation platform for multi-agent intelligence with 35 games of diverse logics and representations. Furthermore, multi-agent intelligence is still at the stage where many problems remain unexplored. Therefore, we provide a building toolkit for researchers to easily invent and build novel multi-agent problems from the provided game set based on a GUI-configurable social tree and five basic multi-agent reward schemes. Finally, we provide Python implementations of five state-of-the-art deep multi-agent reinforcement learning baselines. Along with the baseline implementations, we release a set of 100 best agents/teams that we can train with different training schemes for each game, as the base for evaluating agents with population performance. As such, the research community can perform comparisons under a stable and uniform standard. All the implementations and accompanied tutorials have been open-sourced for the community at https://sites.google.com/view/arena-unity/

    Using Intelligent Agents to Manage Business Processes

    No full text
    This paper describes work undertaken in the ADEPT (Advanced Decision Environment for Process Tasks) project towards developing an agent-based infrastructure for managing business processes. We describe how the key technology of negotiating, service providing, autonomous agents was realised and demonstrate how this was applied to the BT business process of providing a customer quote for network services

    An attitude based cooperative negotiation model in a hostile multi-agent worldZ

    Full text link
    In multi-agent setting agent teams often encounter conflicts in agents’ plans and actions. This paper presents a cooperative negotiation model (ABCON) that allows agents in a team to appropriately negotiate various options in a hostile and dynamic fire world. It shows that negotiations explore the attitudes and behaviors that help agents to manage conflict constructively. It says that cooperative negotiation is guided by the agents’ dynamic assessment of alternative actions given the different scenario conditions. The application and implementation of this model to a virtual fire-fighting domain has revealed a promising prospect in negotiating conflicts and solving them. © 2005 - IOS Press and the authors

    Distributed Artificial Intelligence Solution for D2D Communication in 5G Networks

    Full text link
    Device to Device (D2D) Communication is one of the technology components of the evolving 5G architecture, as it promises improvements in energy efficiency, spectral efficiency, overall system capacity, and higher data rates. The above noted improvements in network performance spearheaded a vast amount of research in D2D, which have identified significant challenges that need to be addressed before realizing their full potential in emerging 5G Networks. Towards this end, this paper proposes the use of a distributed intelligent approach to control the generation of D2D networks. More precisely, the proposed approach uses Belief-Desire-Intention (BDI) intelligent agents with extended capabilities (BDIx) to manage each D2D node independently and autonomously, without the help of the Base Station. The paper includes detailed algorithmic description for the decision of transmission mode, which maximizes the data rate, minimizes the power consumptions, while taking into consideration the computational load. Simulations show the applicability of BDI agents in jointly solving D2D challenges.Comment: 10 pages,9 figure
    corecore